A329279 Number of distinct tilings of a 2n X 2n square with 1 x n polyominoes.
1, 9, 11, 19, 22, 33, 37, 51, 56, 73, 79, 99, 106, 129, 137, 163, 172, 201, 211, 243, 254, 289, 301, 339, 352, 393, 407, 451, 466, 513, 529, 579, 596, 649, 667, 723, 742, 801, 821, 883, 904, 969, 991, 1059, 1082, 1153, 1177, 1251, 1276, 1353, 1379, 1459, 1486, 1569, 1597, 1683, 1712, 1801, 1831
Offset: 1
Keywords
Links
- Jeff Bowermaster, Illustration of a(1)..a(3)
- Jeff Bowermaster, Illustration of a(4) and a(5)
- Jeff Bowermaster, Illustration of a(6)
- Jeff Bowermaster, Illustration of a(7)
- Jeff Bowermaster, Illustration of a(8)
Programs
-
PARI
a(n) = if(n==1,1,if(n%2,(n^2+3*n)/2+2,(n^2+4*n)/2+3))
Formula
For even n, a(n) = (n^2+4n)/2+3; for odd n, a(n) = (n^2+3n)/2+2 ; a(1) = 1.
Comments