cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lechoslaw Ratajczak

Lechoslaw Ratajczak's wiki page.

Lechoslaw Ratajczak has authored 26 sequences. Here are the ten most recent ones:

A386213 Integers t having at least one nonempty subset of the set of its proper divisors for which the equation sigma(t) + r = m*t (m is any integer > 1, r is the sum of elements of such subset) is true.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 70, 72, 75, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 112, 114, 117, 120, 126, 128, 130, 132, 135, 136, 138, 140, 144, 150, 152, 153, 154, 156, 160, 162, 165
Offset: 1

Author

Lechoslaw Ratajczak, Aug 12 2025

Keywords

Comments

The following table lists sequences which give k-deficient-m-perfect numbers:
------------------------------------------------------------
k/m | any m | 2 | 3 |
------------------------------------------------------------
any k | this sequence | A331627 \ {1} | - |
------------------------------------------------------------
1 | A385462 | A271816 \ {1} | A364977 \ A000396 |
------------------------------------------------------------
2 | - | A331628 | - |
------------------------------------------------------------
3 | - | A331629 | - |
------------------------------------------------------------
This sequence contains all, and only, (any k)-deficient-m-perfect numbers (m = 2,3,4,...), equivalently it contains all, and only, k-deficient-(any m)-perfect numbers (k = 1,2,3,...).

Examples

			24 is a term because for 24 the set of proper divisors is {1, 2, 3, 4, 6, 8, 12} and it has exactly 6 subsets which sum up to r satisfying the equation sigma(24) + r = k*24:
  (1) sigma(24) + d_7(24) = 60 + 12 = 72 and 72 = 3*24,
  (2) sigma(24) + (d_4(24) + d_6(24)) = 60 + (4 + 8) = 72 and 72 = 3*24,
  (3) sigma(24) + (d_2(24) + d_4(24) + d_5(24)) = 60 + (2 + 4 + 6) = 72 and 72 = 3*24,
  (4) sigma(24) + (d_1(24) + d_3(24) + d_6(24)) = 60 + (1 + 3 + 8) = 72 and 72 = 3*24,
  (5) sigma(24) + (d_1(24) + d_2(24) + d_3(24) + d_5(24)) = 60 + (1 + 2 + 3 + 6) = 72 and 72 = 3*24,
  (6) sigma(24) + (d_1(24) + d_2(24) + d_3(24) + d_4(24) + d_5(24) + d_6(24) + d_7(24)) = 60 + (1 + 2 + 3 + 4 + 6 + 8 + 12) = 96 and 96 = 4*24.
So 24 is (1, 2, 3 (in 2 variants), 4)-deficient-3-perfect and 7-deficient-4-perfect number.
		

Crossrefs

Programs

  • Mathematica
    n = 1;l={};Do[x = 1;s=DivisorSigma[1,t];A=Most[Divisors[t]];B=Subsets[A];  Do[r=Total[B[[i]]];If[Mod[s+r,t]==0,x=x+1],{i,2,2^Length[A]}];  If[x>1,AppendTo[l,t];n=n+1],{t,1,165}];l (* James C. McMahon, Aug 25 2025 *)
  • Maxima
    (n:1, for t:1 thru 300 do (x:1, s:divsum(t), A:delete(t, divisors(t)), B:args(powerset(A)),
                  for i:2 thru 2^(length(args(A))) do (r:apply("+", args(B[i])),
                          if mod(s+r, t)=0 then (x:x+1)),
                                           if x>1 then (print(n, "", t), n:n+1)));

A386317 Integers t which satisfy 3/2 <= abundancy(t) < 2 but which are not k-deficient-perfect numbers A331627.

Original entry on oeis.org

14, 22, 26, 34, 38, 46, 58, 62, 68, 74, 76, 82, 86, 92, 94, 98, 106, 110, 116, 118, 122, 124, 134, 142, 146, 147, 148, 158, 164, 166, 171, 172, 178, 188, 194, 202, 206, 212, 214, 218, 225, 226, 236, 242, 244, 248, 254, 255, 262, 268, 274, 278, 284, 285, 286, 292, 296, 298, 302, 314
Offset: 1

Author

Lechoslaw Ratajczak, Jul 18 2025

Keywords

Comments

A necessary (but not sufficient) condition for an integer t to be a k-deficient-m-perfect number: (m + 1)/2 <= abundancy(t) < m:
- for m = 2: 3/2 <= abundancy(t) < 2,
- for m = 3: 2 <= abundancy(t) < 3,
- for m = 4: 5/2 <= abundancy(t) < 4.

Examples

			13 is not in this sequence because abundancy(13) = 14/13 (14/13 < 3/2).
14 is in this sequence because abundancy(14) = 12/7 (3/2 <= 12/7 < 2) but 14 is not a k-deficient-perfect number (therefore is not included in A331627).
15 is not in this sequence because abundancy(15) = 8/5 (3/2 <= 8/5 < 2) but 15 is a k-deficient-perfect number (therefore is included in A331627).
		

Crossrefs

Programs

  • Maxima
    (n:1, abundancy(x):=divsum(x)/x,
         for t:1 thru 500 do
            (if abundancy(t)>=3/2 and abundancy(t)<2 then
            (A:append(args(powerset(delete(t,divisors(t)))),[{0}]), b:length(A),
                for i:1 unless (divsum(t)+apply("+" , args(A[i])))/t=2 or i>=b do j:i,
                   if j>=b-1 then (print(n , "" , t), n:n+1))));
    
  • PARI
    isok(m) = my(d=divisors(m), ss=vecsum(d), ab=sigma(m)/m); if ((ab>=3/2) && (ab<2), d = Vec(d, #d-1); forsubset(#d, s, if (#s && (sum(i=1, #s, d[s[i]]) == 2*m - ss), return(0))); return(1)); \\ Michel Marcus, Jul 19 2025

A385462 Numbers t which have a proper divisor d_i(t) such that (d_i(t) + sigma(t))/t is an integer k.

Original entry on oeis.org

2, 4, 8, 10, 16, 24, 32, 44, 60, 64, 84, 128, 136, 152, 168, 184, 252, 256, 270, 336, 512, 630, 752, 756, 792, 864, 884, 924, 936, 1024, 1140, 1170, 1488, 1638, 2048, 2144, 2268, 2272, 2528, 2808, 2970, 3672, 4096, 4320, 4464, 4680, 5148, 5472, 6804, 7308, 7644, 8192, 8384
Offset: 1

Author

Lechoslaw Ratajczak, Jun 29 2025

Keywords

Comments

Consecutive elements of this sequence for which k = 2 are consecutive deficient-perfect numbers (A271816) > 1.
Consecutive elements of this sequence for which k = 3 are consecutive non-perfect elements of A364977.
Let b_k(m) be the number of elements of this sequence with the same k and <= m.
--------------------------------------------
m | b_2(m) | b_3(m) | b_4(m) | b_5(m) |
--------------------------------------------
10^3 | 16 | 13 | - | - |
10^4 | 24 | 31 | 2 | - |
10^5 | 37 | 62 | 5 | - |
10^6 | 54 | 107 | 19 | - |
10^7 | 73 | 175 | 43 | 1 |
10^8 | 98 | 254 | 80 | 3 |
10^9 | 128 | 357 | 141 | 13 |
--------------------------------------------
Are there any odd terms in this sequence for which k > 2? If they exist, they are > 10^9.
Contains 2^k * (2^(k+1) + 2^j - 1) if 0 <= j <= k and 2^(k+1) + 2^j - 1 is prime. - Robert Israel, Jun 30 2025

Examples

			4 is in this sequence because sigma(4) + d_1(4) = 7 + 1 = 8 and 8/4 = 2.
24 is in this sequence because sigma(24) + d_7(24) = 60 + 12 = 72 and 72/24 = 3.
4320 is in this sequence because sigma(4320) + d_47(4320) = 15120 + 2160 = 17280 and 17280/4320 = 4.
		

Programs

  • Maple
    filter:= proc(n) local s;
      s:= - numtheory:-sigma(n) mod n;
      ormap(d -> d mod n = s, numtheory:-divisors(n) minus {n})
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Jun 30 2025
  • Mathematica
    Select[Range[8384],AnyTrue[(Drop[Divisors[#],-1]+DivisorSigma[1,#])/#,IntegerQ]&] (* James C. McMahon, Jul 05 2025 *)
  • Maxima
    (n:1, for t:1 thru 10000 do (s:divsum(t), (A:args(divisors(t)),
                  for i:1 thru length(A)-1 do (y:s+A[i],
                          if mod(y,t)=0 then (print(n,"",t), n:n+1)))));
    
  • PARI
    isok(t) = my(s=sigma(t)); fordiv(t, d, if ((dMichel Marcus, Jun 30 2025

A381060 Numbers t which are the sum of some subset of the values of k satisfying the equation (t - floor((t - k)/k)) mod k = 0 (t > 1, 1 <= k < t).

Original entry on oeis.org

23, 29, 39, 41, 53, 59, 65, 71, 77, 79, 83, 89, 99, 101, 107, 111, 113, 119, 125, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 199, 209, 221, 227, 233, 239, 245, 251, 257, 263, 269, 279, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335, 339, 341, 349, 353, 359, 365, 371
Offset: 1

Author

Lechoslaw Ratajczak, Feb 12 2025

Keywords

Comments

The sequence is based on the triangle in A380305, which is a variant of the triangle in A048158. Thus, the elements of this sequence are counterparts of pseudoperfect numbers (A005835), such as the elements of A375595 are counterparts of abundant numbers (A005101).
The sequence includes all elements of A380153.
The first even element of this sequence is a(768) = 4094.

Examples

			23 is in this sequence because the only k's < 23 satisfying the equation (23 - floor((23 - k)/k)) mod k = 0 are: 1, 5, 7, 11, hence: 5+7+11 = 23.
29 is in this sequence because the only k's < 29 satisfying the equation (29 - floor((29 - k)/k)) mod k = 0 are: 1, 2, 3, 5, 9, 14, hence: 1+2+3+9+14 = 29 and 1+5+9+14 = 29.
47 is not in this sequence because the only k's < 47 satisfying the equation (47 - floor((47 - k)/k)) mod k = 0  are: 1, 3, 7, 11, 15, 23 and no subset of these numbers adds to 47.
		

Crossrefs

Programs

  • Maxima
    (kill(all), s(y):=(f(i,j):=mod(i-floor((i-j)/j),j),s:0,x:1,
          for k:1 thru floor(y/2) do
                  (if f(y,k)=0 then
                  (s:s+k, B[x]:k, x:x+1)),
    B:setify(makelist(B[r],r,1,x-1)), s),
    n:1, for t:2 thru 1000 do
                  (if s(t)>=t  then
                         (for b:2 while b<=x-1 and e#t do
                         (C:args(powerset(B,b)),
                                for h:1 while h<=length(C) and e#t do
                                (e:apply("+" , args(C[h])),
                                        if e=t then
                                        (print(n , " " , t), n:n+1))))));

A380153 Numbers m for which the sum of all values of k satisfying the equation: (m - floor((m - k)/k)) mod k = 0 (1 <= k <= m) equals 2*m.

Original entry on oeis.org

39, 4395, 29055, 57931, 81115, 152571, 164955, 410731, 664747, 877435, 2080875, 2521087, 2539515
Offset: 1

Author

Lechoslaw Ratajczak, Jan 13 2025

Keywords

Comments

a(14) > 3*10^6 (if it exists). Is there any even term?

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins:
 i\j | 1 2 3 4 5 6 7 8 9 10 11 ...
-----+------------------------
   1 | 0
   2 | 0 0
   3 | 0 1 0
   4 | 0 1 1 0
   5 | 0 0 2 1 0
   6 | 0 0 2 2 1 0
   7 | 0 1 0 3 2 1 0
   8 | 0 1 1 3 3 2 1 0
   9 | 0 0 1 0 4 3 2 1 0
  10 | 0 0 2 1 4 4 3 2 1  0
  11 | 0 1 0 2 0 5 4 3 2  1  0
  ...
The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end).
39 is in this sequence because the only k's <= 39 satisfying the equation (39 - floor((39 - k)/k)) mod k = 0 are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39 = 78 = 2*39.
		

Crossrefs

Programs

  • Maxima
    (f(i, j):=mod(i-floor((i-j)/j), j),
    (n:0, for m:2 thru 5000 do
    (s:0, for k:1 thru floor(m/2) do
    (if f(m, k)=0 then
    (s:s+k)), if s=m then
    (n:n+1, print(n , "" , m)))));

Extensions

a(9)-a(13) from Jinyuan Wang, Jan 14 2025

A380305 Triangle read by rows: T(n,k) = (n - floor((n - k)/k)) mod k, for 0 < k <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 1, 1, 3, 3, 2, 1, 0, 0, 0, 1, 0, 4, 3, 2, 1, 0, 0, 0, 2, 1, 4, 4, 3, 2, 1, 0, 0, 1, 0, 2, 0, 5, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 3, 2, 0, 6, 5, 4, 3, 2, 1, 0
Offset: 1

Author

Lechoslaw Ratajczak, Jan 19 2025

Keywords

Comments

The triangle is a variant of the triangle in A048158. The period of the k-th column consists of the period of the k-th column in the triangle in A048158 (0,1,2,...,k-1) and its consecutive k-1 right rotations (moving the rightmost element to the left end). Thus the k-th column has period k^2 and the r-th element of this period has the form (r - 1 - floor((r - 1)/k)) mod k (1 <= r <= k^2).
Such as the triangle in A048158 may be the basis for definitions of different kinds of numbers (abundant numbers, perfect numbers, etc.), this triangle may be the basis for definitions of counterparts of these numbers (elements of A375595 as counterparts of abundant numbers, elements of A380153 as counterparts of perfect numbers).

Examples

			Triangle begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------
  1| 0
  2| 0 0
  3| 0 1 0
  4| 0 1 1 0
  5| 0 0 2 1 0
  6| 0 0 2 2 1 0
  7| 0 1 0 3 2 1 0
  8| 0 1 1 3 3 2 1 0
  9| 0 0 1 0 4 3 2 1 0
 10| 0 0 2 1 4 4 3 2 1  0
 11| 0 1 0 2 0 5 4 3 2  1  0
 ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Mod[n - Floor[(n - k)/k], k]; Table[T[n,k], {n,13},{k,n}]//Flatten (* Stefano Spezia, Jan 20 2025 *)
  • Maxima
    (for n:1 thru 25 do
    (for k:1 thru n do
    (T[n,k]:mod(n-floor((n-k)/k),k)),
    print(makelist(T[n,i], i, 1, n))));
    
  • PARI
    row(n) = vector(n, k, (n - floor((n - k)/k)) % k); \\ Michel Marcus, Jan 20 2025

A378275 Numbers m which satisfy the equation: (m - floor((m - k)/k)) mod k = 1 (1 <= k <= m) only for k = 2 and m - 1.

Original entry on oeis.org

3, 4, 7, 11, 19, 23, 59, 83, 167, 227, 491, 659, 839, 983, 1019, 1091, 1319, 1459, 1523, 1847, 2179, 2503, 2963, 3719, 3767, 4519, 4871, 4919, 5059, 6563, 9239, 9419, 10883, 12107, 12539, 14891, 15383, 20071, 20747, 23819, 25219, 26759, 33851, 35591, 37379, 45191
Offset: 1

Author

Lechoslaw Ratajczak, Nov 21 2024

Keywords

Comments

Every term greater than 4 has the form 4*t + 3.
Let b(z) be the number of elements of this sequence <= z:
-------------
z | b(z)
-------------
10^2 | 8
10^3 | 14
10^4 | 32
10^5 | 55
10^6 | 125
10^7 | 347
10^8 | 950
-------------
Every term greater than 4 is prime.

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins:
 i\j | 1 2 3 4 5 6 7 8 9 ...
-----+------------------
   1 | 0
   2 | 0 0
   3 | 0 1 0
   4 | 0 1 1 0
   5 | 0 0 2 1 0
   6 | 0 0 2 2 1 0
   7 | 0 1 0 3 2 1 0
   8 | 0 1 1 3 3 2 1 0
   9 | 0 0 1 0 4 3 2 1 0
 ...
The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end).
7 is in this sequence because the only k's satisfying the equation (7 - floor((7 - k)/k)) mod k = 1 are 2 and (7-1).
		

Crossrefs

Programs

  • Maxima
    (f(i, j):=mod((i-floor((i-j)/j)), j),
    (n:3, for t:7 thru 100000 step 4 do
    (for k:3 while f(t, k)#1 and k
    				
  • PARI
    is(m) = if(m%4==3, for(k=3, m\2, if((m-m\k)%k==0, return(0))); 1, m==4); \\ Jinyuan Wang, Jan 14 2025

A377417 Numbers t such that t + s(t) = s(s(t)), where s(t) is the sum of aliquot divisors of t (A001065(t)).

Original entry on oeis.org

1272, 4632, 31632, 266712, 805152, 4897392, 94177392, 2928675264
Offset: 1

Author

Lechoslaw Ratajczak, Oct 27 2024

Keywords

Comments

Equivalently, numbers t which satisfy the equation t = sigma(sigma(t) - t) - 2*(sigma(t) - t), where sigma(t) is the sum of divisors of t (A000203(t)).
The sum of aliquot divisors is also called the sum of aliquot parts, the aliquot sum or the sum of proper divisors (A001065).
a(9) > 10^10 (if it exists).
Let s^[m](t) denote m-fold iteration of s(t) (i.e., s^[0](t) = t and s^[m](t) = s(s^[m-1](t))).
The following table shows consecutive solutions t (t <= z) of the equation s^[m](t) = Sum_{i=0..m-1} s^[i](t) for m = 3,4,5,...,30 (solutions for m = 1 are perfect numbers, solutions for m = 2 are in the data section):
---------------------------------------------------------------------------------------------
m | z | t | (m+1)-tuple (s^[0](t), s^[1](t),...,s^[m](t))
---------------------------------------------------------------------------------------------
3 | 10^9 | 8880 | 8880, 19392, 32424, 60696 = 8880+19392+32424
| | 1468584 | 1468584, 2933016, 4399584, 8801184 = 1468584+2933016+4399584
4 | 10^9 | 285816 | 285816, 428784, 679032, 1160208, 2553840 = 285816+428784+
| | | +679032+1160208
5 | 10^9 | 3280592 | 3280592, 4415344, 4196952, 7343928, 12546072, 31782888 =
| | | = 3280592+4415344+4196952+7343928+12546072
6,...,30 | 10^8 | - |
---------------------------------------------------------------------------------------------

Examples

			a(1) = 1272 because s(1272) = 1968, s(1968) = 3240 = 1272 + 1968.
a(2) = 4632 because s(4632) = 7008, s(7008) = 11640 = 4632 + 7008.
a(3) = 31632 because s(31632) = 50208, s(50208) = 81840 = 31632 + 50208.
		

Programs

  • Maxima
    (n:1, for t:2 thru 100000000 do
    (x:divsum(t)-t, y:divsum(x)-x,
    if t+x=y then
    (print(n, "" , t ), n:n+1)));
    
  • PARI
    isok(t) = t == sigma(sigma(t) - t) - 2*(sigma(t) - t); \\ Michel Marcus, Oct 29 2024

A374870 Let e(m) be the sum of all values of k satisfying the equation: (m mod k = floor((m - k)/k) mod k), minus 2*m (1 <= k <= m); then a(n) is the smallest m for which e(m) = n, or 0 if no e(m) has value n.

Original entry on oeis.org

39, 23, 5847, 735, 65, 29, 35, 77, 111, 173, 415, 185, 79, 47, 113, 137, 317, 867, 307, 543, 4843, 2153, 1203, 161, 59, 159, 351, 531, 1577, 475, 617, 89, 5321, 95, 11405, 1371, 107, 83, 219, 197, 199, 1855, 365, 6521, 3667, 8597, 131
Offset: 0

Author

Lechoslaw Ratajczak, Sep 16 2024

Keywords

Comments

The three smallest values of n (n_1, n_2, n_3) for which a(n) is unknown after computing consecutive e(t) for 1 <= t <= z:
z | n_1 | n_2 | n_3 |
----------------------------------------
10^5 | 309 | 343 | 352 |
2*10^5 | 394 | 556 | 558 |
3*10^5 | 647 | 706 | 755 |
4*10^5 | 941 | 951 | 962 |
5*10^5 | 951 | 964 | 1069 |
Are there any values of n for which a(n) = 0?

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i.
The triangle begins:
i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
-----------------------------------------
  1 | 1
  2 | 1 1
  3 | 1 0 1
  4 | 1 0 0 1
  5 | 1 1 0 0 1
  6 | 1 1 0 0 0 1
  7 | 1 0 1 0 0 0 1
  8 | 1 0 0 0 0 0 0 1
  9 | 1 1 0 1 0 0 0 0 1
 10 | 1 1 0 0 0 0 0 0 0 1
 11 | 1 0 1 0 1 0 0 0 0 0 1
 12 | 1 0 1 0 0 0 0 0 0 0 0 1
 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1
 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1
 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
 ...
The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows.
a(0) = 39 because 39 is the smallest m for which e(m) = 0 (only k's satisfying the equation: 39 mod k = floor((39 - k)/k) mod k are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39-2*39 = 0 = e(39)).
a(2) = 5847 because 5847 is the smallest m for which e(m) = 2 (only k's satisfying the equation: 5847 mod k = floor((5847 - k)/k) mod k are: 1, 85, 135, 171, 343, 730, 1461, 2923, 5847, hence: 1+85+135+171+343+730+1461+2923+5847-2*5847 = 2 = e(5847)).
		

Programs

  • VBA
    Sub calcul()
    For m = 1 To 500000
    s = 0
          For k = 1 To WorksheetFunction.Floor(m / 2, 1)
                If (m - WorksheetFunction.Floor((m - k) / k, 1)) Mod k = 0 Then
                s = s + k
                End If
          Next k
                       If s > m Then
                       e = s - m
                       v = WorksheetFunction.Ceiling(e / 1000000, 1)
                            If IsEmpty(Cells(e - (v - 1) * 1000000, v)) = False Then
                            Else
                            Cells(e - (v - 1) * 1000000, v).Value = m
                            End If
                       End If
    Next m
    End Sub

A375595 Numbers m for which the sum of all values of k satisfying the equation: m mod k = floor((m - k)/k) mod k (1 <= k <= m) exceeds 2*m.

Original entry on oeis.org

23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 79, 83, 89, 95, 99, 101, 107, 111, 113, 119, 125, 131, 137, 139, 143, 149, 155, 159, 161, 167, 173, 179, 185, 191, 197, 199, 203, 209, 215, 219, 221, 223, 227, 233, 239, 245, 251, 257, 259, 263, 269
Offset: 1

Author

Lechoslaw Ratajczak, Aug 20 2024

Keywords

Comments

The first even element of this sequence is a(817) = 3464.

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i. The triangle begins:
 i\j| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
-----------------------------------------
   1| 1
   2| 1 1
   3| 1 0 1
   4| 1 0 0 1
   5| 1 1 0 0 1
   6| 1 1 0 0 0 1
   7| 1 0 1 0 0 0 1
   8| 1 0 0 0 0 0 0 1
   9| 1 1 0 1 0 0 0 0 1
  10| 1 1 0 0 0 0 0 0 0  1
  11| 1 0 1 0 1 0 0 0 0  0  1
  12| 1 0 1 0 0 0 0 0 0  0  0  1
  13| 1 1 0 0 0 1 0 0 0  0  0  0  1
  14| 1 1 0 1 0 0 0 0 0  0  0  0  0  1
  15| 1 0 0 0 0 0 1 0 0  0  0  0  0  0  1
 ...
The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows.
11 is not in this sequence because only k's <= 11 satisfying the equation 11 mod k = floor((11 - k)/k) mod k are: 1, 3, 5, 11, hence 1+3+5+11 = 20 and 20 < 2*11.
23 is in this sequence because only k's <= 23 satisfying the equation 23 mod k = floor((23 - k)/k) mod k are: 1, 5, 7, 11, 23, hence 1+5+7+11+23 = 47 and 47 > 2*23.
		

Crossrefs

Programs

  • Maxima
    (f(i,j):=mod(i-floor((i-j)/j),j),
    (n:0, for m:2 thru 500 do
    (s:0, for k:1 thru floor(m/2) do
    (if f(m,k)=0 then
    (s:s+k)), if s>m then
    (n:n+1, print(n , "" , m)))));