cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A378275 Numbers m which satisfy the equation: (m - floor((m - k)/k)) mod k = 1 (1 <= k <= m) only for k = 2 and m - 1.

Original entry on oeis.org

3, 4, 7, 11, 19, 23, 59, 83, 167, 227, 491, 659, 839, 983, 1019, 1091, 1319, 1459, 1523, 1847, 2179, 2503, 2963, 3719, 3767, 4519, 4871, 4919, 5059, 6563, 9239, 9419, 10883, 12107, 12539, 14891, 15383, 20071, 20747, 23819, 25219, 26759, 33851, 35591, 37379, 45191
Offset: 1

Views

Author

Lechoslaw Ratajczak, Nov 21 2024

Keywords

Comments

Every term greater than 4 has the form 4*t + 3.
Let b(z) be the number of elements of this sequence <= z:
-------------
z | b(z)
-------------
10^2 | 8
10^3 | 14
10^4 | 32
10^5 | 55
10^6 | 125
10^7 | 347
10^8 | 950
-------------
Every term greater than 4 is prime.

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins:
 i\j | 1 2 3 4 5 6 7 8 9 ...
-----+------------------
   1 | 0
   2 | 0 0
   3 | 0 1 0
   4 | 0 1 1 0
   5 | 0 0 2 1 0
   6 | 0 0 2 2 1 0
   7 | 0 1 0 3 2 1 0
   8 | 0 1 1 3 3 2 1 0
   9 | 0 0 1 0 4 3 2 1 0
 ...
The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end).
7 is in this sequence because the only k's satisfying the equation (7 - floor((7 - k)/k)) mod k = 1 are 2 and (7-1).
		

Crossrefs

Programs

  • Maxima
    (f(i, j):=mod((i-floor((i-j)/j)), j),
    (n:3, for t:7 thru 100000 step 4 do
    (for k:3 while f(t, k)#1 and k
    				
  • PARI
    is(m) = if(m%4==3, for(k=3, m\2, if((m-m\k)%k==0, return(0))); 1, m==4); \\ Jinyuan Wang, Jan 14 2025

A380153 Numbers m for which the sum of all values of k satisfying the equation: (m - floor((m - k)/k)) mod k = 0 (1 <= k <= m) equals 2*m.

Original entry on oeis.org

39, 4395, 29055, 57931, 81115, 152571, 164955, 410731, 664747, 877435, 2080875, 2521087, 2539515
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 13 2025

Keywords

Comments

a(14) > 3*10^6 (if it exists). Is there any even term?

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = (i - floor((i - j)/j)) mod j for 1 <= j <= i. The triangle begins:
 i\j | 1 2 3 4 5 6 7 8 9 10 11 ...
-----+------------------------
   1 | 0
   2 | 0 0
   3 | 0 1 0
   4 | 0 1 1 0
   5 | 0 0 2 1 0
   6 | 0 0 2 2 1 0
   7 | 0 1 0 3 2 1 0
   8 | 0 1 1 3 3 2 1 0
   9 | 0 0 1 0 4 3 2 1 0
  10 | 0 0 2 1 4 4 3 2 1  0
  11 | 0 1 0 2 0 5 4 3 2  1  0
  ...
The j-th column has period j^2, r-th element of this period has the form (r - 1 - floor((r - 1)/j)) mod j (1 <= r <= j^2). The period of j-th column consists of the sequence (0,1,2,...,j-1) and its consecutive j-1 right rotations (moving rightmost element to the left end).
39 is in this sequence because the only k's <= 39 satisfying the equation (39 - floor((39 - k)/k)) mod k = 0 are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39 = 78 = 2*39.
		

Crossrefs

Programs

  • Maxima
    (f(i, j):=mod(i-floor((i-j)/j), j),
    (n:0, for m:2 thru 5000 do
    (s:0, for k:1 thru floor(m/2) do
    (if f(m, k)=0 then
    (s:s+k)), if s=m then
    (n:n+1, print(n , "" , m)))));

Extensions

a(9)-a(13) from Jinyuan Wang, Jan 14 2025

A380305 Triangle read by rows: T(n,k) = (n - floor((n - k)/k)) mod k, for 0 < k <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 1, 1, 3, 3, 2, 1, 0, 0, 0, 1, 0, 4, 3, 2, 1, 0, 0, 0, 2, 1, 4, 4, 3, 2, 1, 0, 0, 1, 0, 2, 0, 5, 4, 3, 2, 1, 0, 0, 1, 0, 2, 1, 5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 3, 2, 0, 6, 5, 4, 3, 2, 1, 0
Offset: 1

Views

Author

Lechoslaw Ratajczak, Jan 19 2025

Keywords

Comments

The triangle is a variant of the triangle in A048158. The period of the k-th column consists of the period of the k-th column in the triangle in A048158 (0,1,2,...,k-1) and its consecutive k-1 right rotations (moving the rightmost element to the left end). Thus the k-th column has period k^2 and the r-th element of this period has the form (r - 1 - floor((r - 1)/k)) mod k (1 <= r <= k^2).
Such as the triangle in A048158 may be the basis for definitions of different kinds of numbers (abundant numbers, perfect numbers, etc.), this triangle may be the basis for definitions of counterparts of these numbers (elements of A375595 as counterparts of abundant numbers, elements of A380153 as counterparts of perfect numbers).

Examples

			Triangle begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------
  1| 0
  2| 0 0
  3| 0 1 0
  4| 0 1 1 0
  5| 0 0 2 1 0
  6| 0 0 2 2 1 0
  7| 0 1 0 3 2 1 0
  8| 0 1 1 3 3 2 1 0
  9| 0 0 1 0 4 3 2 1 0
 10| 0 0 2 1 4 4 3 2 1  0
 11| 0 1 0 2 0 5 4 3 2  1  0
 ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=Mod[n - Floor[(n - k)/k], k]; Table[T[n,k], {n,13},{k,n}]//Flatten (* Stefano Spezia, Jan 20 2025 *)
  • Maxima
    (for n:1 thru 25 do
    (for k:1 thru n do
    (T[n,k]:mod(n-floor((n-k)/k),k)),
    print(makelist(T[n,i], i, 1, n))));
    
  • PARI
    row(n) = vector(n, k, (n - floor((n - k)/k)) % k); \\ Michel Marcus, Jan 20 2025

A374870 Let e(m) be the sum of all values of k satisfying the equation: (m mod k = floor((m - k)/k) mod k), minus 2*m (1 <= k <= m); then a(n) is the smallest m for which e(m) = n, or 0 if no e(m) has value n.

Original entry on oeis.org

39, 23, 5847, 735, 65, 29, 35, 77, 111, 173, 415, 185, 79, 47, 113, 137, 317, 867, 307, 543, 4843, 2153, 1203, 161, 59, 159, 351, 531, 1577, 475, 617, 89, 5321, 95, 11405, 1371, 107, 83, 219, 197, 199, 1855, 365, 6521, 3667, 8597, 131
Offset: 0

Views

Author

Lechoslaw Ratajczak, Sep 16 2024

Keywords

Comments

The three smallest values of n (n_1, n_2, n_3) for which a(n) is unknown after computing consecutive e(t) for 1 <= t <= z:
z | n_1 | n_2 | n_3 |
----------------------------------------
10^5 | 309 | 343 | 352 |
2*10^5 | 394 | 556 | 558 |
3*10^5 | 647 | 706 | 755 |
4*10^5 | 941 | 951 | 962 |
5*10^5 | 951 | 964 | 1069 |
Are there any values of n for which a(n) = 0?

Examples

			Let T(i,j) be the triangle read by rows: T(i,j) = 1 if i mod j = floor((i - j)/j) mod j, T(i,j) = 0 otherwise, for 1 <= j <= i.
The triangle begins:
i\j | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
-----------------------------------------
  1 | 1
  2 | 1 1
  3 | 1 0 1
  4 | 1 0 0 1
  5 | 1 1 0 0 1
  6 | 1 1 0 0 0 1
  7 | 1 0 1 0 0 0 1
  8 | 1 0 0 0 0 0 0 1
  9 | 1 1 0 1 0 0 0 0 1
 10 | 1 1 0 0 0 0 0 0 0 1
 11 | 1 0 1 0 1 0 0 0 0 0 1
 12 | 1 0 1 0 0 0 0 0 0 0 0 1
 13 | 1 1 0 0 0 1 0 0 0 0 0 0 1
 14 | 1 1 0 1 0 0 0 0 0 0 0 0 0 1
 15 | 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
 ...
The j-th column has period j^2. Consecutive elements of this period are j X j identity matrix entries, read by rows.
a(0) = 39 because 39 is the smallest m for which e(m) = 0 (only k's satisfying the equation: 39 mod k = floor((39 - k)/k) mod k are: 1, 3, 7, 9, 19, 39, hence: 1+3+7+9+19+39-2*39 = 0 = e(39)).
a(2) = 5847 because 5847 is the smallest m for which e(m) = 2 (only k's satisfying the equation: 5847 mod k = floor((5847 - k)/k) mod k are: 1, 85, 135, 171, 343, 730, 1461, 2923, 5847, hence: 1+85+135+171+343+730+1461+2923+5847-2*5847 = 2 = e(5847)).
		

Crossrefs

Programs

  • VBA
    Sub calcul()
    For m = 1 To 500000
    s = 0
          For k = 1 To WorksheetFunction.Floor(m / 2, 1)
                If (m - WorksheetFunction.Floor((m - k) / k, 1)) Mod k = 0 Then
                s = s + k
                End If
          Next k
                       If s > m Then
                       e = s - m
                       v = WorksheetFunction.Ceiling(e / 1000000, 1)
                            If IsEmpty(Cells(e - (v - 1) * 1000000, v)) = False Then
                            Else
                            Cells(e - (v - 1) * 1000000, v).Value = m
                            End If
                       End If
    Next m
    End Sub

A381060 Numbers t which are the sum of some subset of the values of k satisfying the equation (t - floor((t - k)/k)) mod k = 0 (t > 1, 1 <= k < t).

Original entry on oeis.org

23, 29, 39, 41, 53, 59, 65, 71, 77, 79, 83, 89, 99, 101, 107, 111, 113, 119, 125, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 199, 209, 221, 227, 233, 239, 245, 251, 257, 263, 269, 279, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335, 339, 341, 349, 353, 359, 365, 371
Offset: 1

Views

Author

Lechoslaw Ratajczak, Feb 12 2025

Keywords

Comments

The sequence is based on the triangle in A380305, which is a variant of the triangle in A048158. Thus, the elements of this sequence are counterparts of pseudoperfect numbers (A005835), such as the elements of A375595 are counterparts of abundant numbers (A005101).
The sequence includes all elements of A380153.
The first even element of this sequence is a(768) = 4094.

Examples

			23 is in this sequence because the only k's < 23 satisfying the equation (23 - floor((23 - k)/k)) mod k = 0 are: 1, 5, 7, 11, hence: 5+7+11 = 23.
29 is in this sequence because the only k's < 29 satisfying the equation (29 - floor((29 - k)/k)) mod k = 0 are: 1, 2, 3, 5, 9, 14, hence: 1+2+3+9+14 = 29 and 1+5+9+14 = 29.
47 is not in this sequence because the only k's < 47 satisfying the equation (47 - floor((47 - k)/k)) mod k = 0  are: 1, 3, 7, 11, 15, 23 and no subset of these numbers adds to 47.
		

Crossrefs

Programs

  • Maxima
    (kill(all), s(y):=(f(i,j):=mod(i-floor((i-j)/j),j),s:0,x:1,
          for k:1 thru floor(y/2) do
                  (if f(y,k)=0 then
                  (s:s+k, B[x]:k, x:x+1)),
    B:setify(makelist(B[r],r,1,x-1)), s),
    n:1, for t:2 thru 1000 do
                  (if s(t)>=t  then
                         (for b:2 while b<=x-1 and e#t do
                         (C:args(powerset(B,b)),
                                for h:1 while h<=length(C) and e#t do
                                (e:apply("+" , args(C[h])),
                                        if e=t then
                                        (print(n , " " , t), n:n+1))))));
Showing 1-5 of 5 results.