A183298 Complement of A147875.
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1
Keywords
Crossrefs
Cf. A147875.
Programs
-
Mathematica
a=5/2; b=3/2; F[n_]:=a*n^2+b*n; R[n_]:=(n/a+((b-1)/(2a))^2)^(1/2); G[n_]:=n-1+Ceiling[R[n]-(b-1)/(2a)]; Table[F[n], {n,60}] Table[G[n], {n,100}]
-
Python
from math import isqrt def A183298(n): return n+(m:=isqrt((k:=n<<1)//5))-(k<=m*(5*m+1)) # Chai Wah Wu, Oct 12 2024
Formula
(See the Mathematica code.)
a(n) = n+floor(sqrt(2n/5)) if 2n > floor(sqrt(2n/5))(5*floor(sqrt(2n/5))+1) and a(n) = n+floor(sqrt(2n/5))-1 otherwise. - Chai Wah Wu, Oct 12 2024
Comments