A294826
Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.
Original entry on oeis.org
1, 4, 151, 1315, 36698, 667109, 10749479, 399851303, 401511863, 18933826729, 246810236317, 4700047812703, 145981746528913, 9796912235587651, 9810925971351679, 9823210739716249, 403196782523223569, 11704197956499986461, 269433333504358946963, 5231145593209503407215, 747842028258712790473
Offset: 0
The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ...
V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649.
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
-
[Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
-
Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* G. C. Greubel, Aug 29 2018 *)
Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
-
a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ Michel Marcus, Nov 17 2017
A294827
Denominators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.
Original entry on oeis.org
2, 7, 252, 2142, 58905, 1060290, 16964640, 627691680, 627691680, 29501508960, 383519616480, 7286872713120, 225893054106720, 15134834625150240, 15134834625150240, 15134834625150240, 620528219631159840, 17995318369303635360, 413892322493983613280, 8029511056383282097632
Offset: 0
See A294826 for the rationals.
A226488
a(n) = n*(13*n - 9)/2.
Original entry on oeis.org
0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A005843 (k=0),
A000096 (k=1),
A002378 (k=2),
A005449 (k=3),
A001105 (k=4),
A005476 (k=5),
A049450 (k=6),
A218471 (k=7),
A002939 (k=8),
A062708 (k=9),
A135706 (k=10),
A180223 (k=11),
A139267 (n=12), this sequence (k=13),
A139268 (k=14),
A226489 (k=15),
A139271 (k=16),
A180232 (k=17),
A152995 (k=18),
A226490 (k=19),
A152965 (k=20),
A226491 (k=21),
A152997 (k=22).
-
List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
-
[n*(13*n-9)/2: n in [0..50]];
-
I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
-
A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
-
Table[n(13n-9)/2, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
-
a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
-
[n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A152773
3 times heptagonal numbers: a(n) = 3*n*(5*n-3)/2.
Original entry on oeis.org
0, 3, 21, 54, 102, 165, 243, 336, 444, 567, 705, 858, 1026, 1209, 1407, 1620, 1848, 2091, 2349, 2622, 2910, 3213, 3531, 3864, 4212, 4575, 4953, 5346, 5754, 6177, 6615, 7068, 7536, 8019, 8517, 9030, 9558, 10101, 10659, 11232, 11820, 12423, 13041, 13674, 14322, 14985
Offset: 0
Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=15: see Comments lines of
A226492.
Cf.
A002378 (3-cycles in triangular honeycomb acute knight graph),
A045943 (4-cycles),
A028896 (5-cycles).
-
Table[3 n (5 n - 3)/2, {n, 0, 50}] (* Harvey P. Dale, May 08 2012 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 21}, 50] (* Harvey P. Dale, May 08 2012 *)
CoefficientList[Series[-((3 x^5 (1 + 4 x))/(-1 + x)^3), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 25 2017 *)
-
a(n)=3*n*(5*n-3)/2 \\ Charles R Greathouse IV, Sep 24 2015
A226492
a(n) = n*(11*n-5)/2.
Original entry on oeis.org
0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0
Cf. sequences in Comments lines.
-
[n*(11*n-5)/2: n in [0..50]];
-
I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
-
Table[n (11 n - 5)/2, {n, 0, 50}]
CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
-
a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015
A195015
Main axis of the square spiral whose edges have length A195013 and whose vertices are the numbers A195014.
Original entry on oeis.org
0, 2, 12, 24, 44, 66, 96, 128, 168, 210, 260, 312, 372, 434, 504, 576, 656, 738, 828, 920, 1020, 1122, 1232, 1344, 1464, 1586, 1716, 1848, 1988, 2130, 2280, 2432, 2592, 2754, 2924, 3096, 3276, 3458, 3648, 3840, 4040, 4242, 4452, 4664, 4884
Offset: 0
-
[(2*n*(5*n+2)+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
-
LinearRecurrence[{2, 0, -2, 1}, {0, 2, 12, 24}, 50] (* Paolo Xausa, Feb 09 2024 *)
A249547
a(n) = (10*n^2+8*n-1+(-1)^n)/8.
Original entry on oeis.org
0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0
-
[(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
-
A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
-
Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
-
a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
-
concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
A153784
4 times heptagonal numbers: a(n) = 2*n*(5*n-3).
Original entry on oeis.org
0, 4, 28, 72, 136, 220, 324, 448, 592, 756, 940, 1144, 1368, 1612, 1876, 2160, 2464, 2788, 3132, 3496, 3880, 4284, 4708, 5152, 5616, 6100, 6604, 7128, 7672, 8236, 8820, 9424, 10048, 10692, 11356, 12040, 12744, 13468, 14212, 14976, 15760, 16564, 17388, 18232, 19096
Offset: 0
-
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,4,6!,20}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
Table[2n(5n-3),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,4,28},50] (* Harvey P. Dale, Mar 19 2015 *)
-
a(n)=2*n*(5*n-3) \\ Charles R Greathouse IV, Jun 17 2017
A153786
6 times heptagonal numbers: a(n) = 3*n*(5*n-3).
Original entry on oeis.org
0, 6, 42, 108, 204, 330, 486, 672, 888, 1134, 1410, 1716, 2052, 2418, 2814, 3240, 3696, 4182, 4698, 5244, 5820, 6426, 7062, 7728, 8424, 9150, 9906, 10692, 11508, 12354, 13230, 14136, 15072, 16038, 17034, 18060, 19116, 20202, 21318
Offset: 0
-
s=0;lst={s};Do[s+=n;AppendTo[lst,s],{n,6,8!,30}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
Table[ 3*n*(5*n-3), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,6,42}, 25] (* G. C. Greubel, Aug 28 2016 *)
-
a(n) = 3*n*(5*n-3); \\ Michel Marcus, Aug 28 2016
Showing 1-10 of 11 results.
Comments