cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.

Original entry on oeis.org

1, 4, 151, 1315, 36698, 667109, 10749479, 399851303, 401511863, 18933826729, 246810236317, 4700047812703, 145981746528913, 9796912235587651, 9810925971351679, 9823210739716249, 403196782523223569, 11704197956499986461, 269433333504358946963, 5231145593209503407215, 747842028258712790473
Offset: 0

Views

Author

Wolfdieter Lang, Nov 16 2017

Keywords

Comments

The corresponding denominators are given in A294827.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2].
The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639.
In the Koecher reference v_5(2) = (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5).

Examples

			The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ...
V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
  • Mathematica
    Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* G. C. Greubel, Aug 29 2018 *)
    Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ Michel Marcus, Nov 17 2017
    

Formula

a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.

A294827 Denominators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.

Original entry on oeis.org

2, 7, 252, 2142, 58905, 1060290, 16964640, 627691680, 627691680, 29501508960, 383519616480, 7286872713120, 225893054106720, 15134834625150240, 15134834625150240, 15134834625150240, 620528219631159840, 17995318369303635360, 413892322493983613280, 8029511056383282097632
Offset: 0

Views

Author

Wolfdieter Lang, Nov 16 2017

Keywords

Comments

The corresponding numerators are given in A294826. Details are found there.

Examples

			See A294826 for the rationals.
		

Crossrefs

Programs

  • PARI
    a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ Michel Marcus, Nov 17 2017

Formula

a(n) = denominator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)). For this formula in terms of the digamma function see A294826.

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A131242 Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0

Views

Author

Hieronymus Fischer, Jun 21 2007

Keywords

Comments

Complementary with A130488 regarding triangular numbers, in that A130488(n)+10*a(n)=n(n+1)/2=A000217(n).

Examples

			As square array :
    0,   0,   0,   0,   0,   0,   0,   0,   0,    0
    1,   2,   3,   4,   5,   6,   7,   8,   9,   10
   12,  14,  16,  18,  20,  22,  24,  26,  28,   30
   33,  36,  39,  42,  45,  48,  51,  54,  57,   60
   64,  68,  72,  76,  80,  84,  88,  92,  96,  100
  105, 110, 115, 120, 125, 130, 135, 140, 145,  150
  156, 162, 168, 174, 180, 186, 192, 198, 204,  210
... - _Philippe Deléham_, Mar 27 2013
		

Crossrefs

Programs

  • Mathematica
    Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
    Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
  • PARI
    for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
    
  • PARI
    a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = (1/2)*floor(n/10)*(2n-8-10*floor(n/10)).
a(n) = A059995(n)*(2n-8-10*A059995(n))/2.
a(n) = (1/2)*A059995(n)*(n-8+A010879(n)).
a(n) = (n-A010879(n))*(n+A010879(n)-8)/20.
G.f.: x^10/((1-x^10)(1-x)^2).
From Philippe Deléham, Mar 27 2013: (Start)
a(10n) = A051624(n).
a(10n+1) = A135706(n).
a(10n+2) = A147874(n+1).
a(10n+3) = 2*A005476(n).
a(10n+4) = A033429(n).
a(10n+5) = A202803(n).
a(10n+6) = A168668(n).
a(10n+7) = 2*A147875(n).
a(10n+8) = A135705(n).
a(10n+9) = A124080(n). (End)
a(n) = A008728(n-10) for n>= 10. - Georg Fischer, Nov 03 2018

A152773 3 times heptagonal numbers: a(n) = 3*n*(5*n-3)/2.

Original entry on oeis.org

0, 3, 21, 54, 102, 165, 243, 336, 444, 567, 705, 858, 1026, 1209, 1407, 1620, 1848, 2091, 2349, 2622, 2910, 3213, 3531, 3864, 4212, 4575, 4953, 5346, 5754, 6177, 6615, 7068, 7536, 8019, 8517, 9030, 9558, 10101, 10659, 11232, 11820, 12423, 13041, 13674, 14322, 14985
Offset: 0

Views

Author

Omar E. Pol, Dec 13 2008

Keywords

Comments

Also the number of 6-cycles in the (n+5)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jun 25 2017

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=15: see Comments lines of A226492.
Cf. A002378 (3-cycles in triangular honeycomb acute knight graph), A045943 (4-cycles), A028896 (5-cycles).

Programs

Formula

a(n) = (15*n^2 - 9*n)/2 = 3*A000566(n).
a(n) = a(n-1) + 15*n - 12 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 26 2010
G.f.: 3*x*(1+4*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(0)=0, a(1)=3, a(2)=21, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 08 2012
a(n) = n + A226489(n). - Bruno Berselli, Jun 11 2013
Sum_{n>=1} 1/a(n) = tan(Pi/10)*Pi/9 - sqrt(5)*log(phi)/9 + 5*log(5)/18, where phi is the golden ratio (A001622). - Amiram Eldar, May 20 2023
E.g.f.: 3*exp(x)*x*(2 + 5*x)/2. - Elmo R. Oliveira, Dec 24 2024

A226492 a(n) = n*(11*n-5)/2.

Original entry on oeis.org

0, 3, 17, 42, 78, 125, 183, 252, 332, 423, 525, 638, 762, 897, 1043, 1200, 1368, 1547, 1737, 1938, 2150, 2373, 2607, 2852, 3108, 3375, 3653, 3942, 4242, 4553, 4875, 5208, 5552, 5907, 6273, 6650, 7038, 7437, 7847, 8268, 8700, 9143, 9597, 10062, 10538, 11025, 11523
Offset: 0

Views

Author

Bruno Berselli, Jun 11 2013

Keywords

Comments

Sequences of numbers of the form n*(n*k - k + 6)/2:
. k from 0 to 10, respectively: A008585, A055998, A005563, A045943, A014105, A005475, A033428, A022264, A033991, A062741, A147874;
. k=11: a(n);
. k=12: A094159;
. k=13: 0, 3, 19, 48, 90, 145, 213, 294, 388, 495, 615, 748, 894, ...;
. k=14: 0, 3, 20, 51, 96, 155, 228, 315, 416, 531, 660, 803, 960, ...;
. k=15: A152773;
. k=16: A139272;
. k=17: 0, 3, 23, 60, 114, 185, 273, 378, 500, 639, 795, 968, ...;
. k=18: A152751;
. k=19: 0, 3, 25, 66, 126, 205, 303, 420, 556, 711, 885, 1078, ...;
. k=20: 0, 3, 26, 69, 132, 215, 318, 441, 584, 747, 930, 1133, ...;
. k=21: A152759;
. k=22: 0, 3, 28, 75, 144, 235, 348, 483, 640, 819, 1020, 1243, ...;
. k=23: 0, 3, 29, 78, 150, 245, 363, 504, 668, 855, 1065, 1298, ...;
. k=24: A152767;
. k=25: 0, 3, 31, 84, 162, 265, 393, 546, 724, 927, 1155, 1408, ...;
. k=26: 0, 3, 32, 87, 168, 275, 408, 567, 752, 963, 1200, 1463, ...;
. k=27: A153783;
. k=28: A195021;
. k=29: 0, 3, 35, 96, 186, 305, 453, 630, 836, 1071, 1335, 1628, ...;
. k=30: A153448;
. k=31: 0, 3, 37, 102, 198, 325, 483, 672, 892, 1143, 1425, 1738, ...;
. k=32: 0, 3, 38, 105, 204, 335, 498, 693, 920, 1179, 1470, 1793, ...;
. k=33: A153875.
Also:
a(n) - n = A180223(n);
a(n) + n = n*(11*n-3)/2 = 0, 4, 19, 45, 82, 130, 189, 259, ...;
a(n) - 2*n = A051865(n);
a(n) + 2*n = A022268(n);
a(n) - 3*n = A152740(n-1);
a(n) + 3*n = A022269(n);
a(n) - 4*n = n*(11*n-13)/2 = 0, -1, 9, 30, 62, 105, 159, 224, ...;
a(n) + 4*n = A254963(n);
a(n) - n*(n-1)/2 = A147874(n+1);
a(n) + n*(n-1)/2 = A094159(n) (case k=12);
a(n) - n*(n-1) = A062741(n) (see above, this is the case k=9);
a(n) + n*(n-1) = n*(13*n-7)/2 (case k=13);
a(n) - n*(n+1)/2 = A135706(n);
a(n) + n*(n+1)/2 = A033579(n);
a(n) - n*(n+1) = A051682(n);
a(n) + n*(n+1) = A186030(n);
a(n) - n^2 = A062708(n);
a(n) + n^2 = n*(13*n-5)/2 = 0, 4, 21, 51, 94, 150, 219, ..., etc.
Sum of reciprocals of a(n), for n > 0: 0.47118857003113149692081665034891...

Crossrefs

Cf. sequences in Comments lines.
First differences are in A017425.

Programs

  • Magma
    [n*(11*n-5)/2: n in [0..50]];
    
  • Magma
    I:=[0,3,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..46]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (11 n - 5)/2, {n, 0, 50}]
    CoefficientList[Series[x (3 + 8 x) / (1 - x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{3,-3,1},{0,3,17},50] (* Harvey P. Dale, Jan 14 2019 *)
  • PARI
    a(n)=n*(11*n-5)/2 \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x*(3+8*x)/(1-x)^3.
a(n) + a(-n) = A033584(n).
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: exp(x)*x*(6 + 11*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n + A180223(n). (End)

A195015 Main axis of the square spiral whose edges have length A195013 and whose vertices are the numbers A195014.

Original entry on oeis.org

0, 2, 12, 24, 44, 66, 96, 128, 168, 210, 260, 312, 372, 434, 504, 576, 656, 738, 828, 920, 1020, 1122, 1232, 1344, 1464, 1586, 1716, 1848, 1988, 2130, 2280, 2432, 2592, 2754, 2924, 3096, 3276, 3458, 3648, 3840, 4040, 4242, 4452, 4664, 4884
Offset: 0

Views

Author

Omar E. Pol, Sep 26 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., and the same line from 0, in the direction 0, 12, ..., in the square spiral mentioned above. Axis perpendicular to A195016 in the same spiral.
Also four times A005475 and positives A152965 interleaved.

Crossrefs

Programs

  • Magma
    [(2*n*(5*n+2)+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 2, 12, 24}, 50] (* Paolo Xausa, Feb 09 2024 *)

Formula

From Bruno Berselli, Oct 14 2011: (Start)
G.f.: 2*x*(1+4*x)/((1+x)*(1-x)^3).
a(n) = (2*n*(5*n+2) + 3*(-1)^n-3)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) + a(n-1) = A135706(n). (End)

A249547 a(n) = (10*n^2+8*n-1+(-1)^n)/8.

Original entry on oeis.org

0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 31 2014

Keywords

Comments

a(n) is the number of lattice points (x,y) in the coordinate plane bounded by y < 3x, y >= x/2 and x <= n.
a(n)+1 is the number of lattice points bounded by y <= 3x, y >= x/2 and x <= n.

Crossrefs

Programs

  • Magma
    [(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
    
  • Maple
    A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
  • Mathematica
    Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
  • PARI
    a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
    
  • PARI
    concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015

Formula

G.f.: x*(2+3*x)/((1-x)^3*(1+x)).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3.
a(n) = A004526(n) + A226292(n), for n>0.
a(n) = Sum_{i=0..n} A001068(2*i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - sinh(x))/4. - Ilya Gutkovskiy, May 06 2016
a(2n) = A168668(n). a(2n-1) = A135706(n). - Wesley Ivan Hurt, May 09 2016

A153784 4 times heptagonal numbers: a(n) = 2*n*(5*n-3).

Original entry on oeis.org

0, 4, 28, 72, 136, 220, 324, 448, 592, 756, 940, 1144, 1368, 1612, 1876, 2160, 2464, 2788, 3132, 3496, 3880, 4284, 4708, 5152, 5616, 6100, 6604, 7128, 7672, 8236, 8820, 9424, 10048, 10692, 11356, 12040, 12744, 13468, 14212, 14976, 15760, 16564, 17388, 18232, 19096
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 4, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

Crossrefs

Programs

Formula

a(n) = 10*n^2 - 6*n = 4*A000566(n) = 2*A135706(n).
a(n) = 20*n + a(n-1) - 16 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = A087348(n) - 1, n >= 1. - Omar E. Pol, Jul 18 2012
a(0)=0, a(1)=4, a(2)=28, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 19 2015
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 4*x*(1 + 4*x)/(1 - x)^3.
E.g.f.: 2*exp(x)*x*(2 + 5*x).
a(n) = A152745(n) - n. (End)

A153786 6 times heptagonal numbers: a(n) = 3*n*(5*n-3).

Original entry on oeis.org

0, 6, 42, 108, 204, 330, 486, 672, 888, 1134, 1410, 1716, 2052, 2418, 2814, 3240, 3696, 4182, 4698, 5244, 5820, 6426, 7062, 7728, 8424, 9150, 9906, 10692, 11508, 12354, 13230, 14136, 15072, 16038, 17034, 18060, 19116, 20202, 21318
Offset: 0

Views

Author

Omar E. Pol, Jan 02 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 15*n^2 - 9*n = A000566(n)*6 = A135706(n)*3 = A152773(n)*2.
a(n) = 30*n + a(n-1) - 24 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 6*x*(1 + 4*x)/(1 - x)^3.
E.g.f.: 3*x*(2 + 5*x)*exp(x). (End)
Showing 1-10 of 11 results. Next