cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047215 Numbers that are congruent to {0, 2} mod 5.

Original entry on oeis.org

0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of 5n into exactly 2 parts. - Colin Barker, Mar 23 2015
Numbers k such that k^2/5 + k*(k + 1)/5 = k*(2*k + 1)/5 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Different from A038126.
Cf. A249547 (partial sums), A010693 (1st differences).

Programs

Formula

a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A084215(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022

A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Oct 21 2008: (Start)
Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)
Proof:
arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)
= 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)
= 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),
and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)

Crossrefs

Programs

Formula

contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
From Bruno Berselli, Oct 17 2011: (Start)
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(-n) = -A047203(n+1). (End)
From Wesley Ivan Hurt, Sep 17 2015: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
a(n) = n + A002265(n). - Robert Israel, Sep 17 2015
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

More terms from James Sellers, Sep 19 2000

A082111 a(n) = n^2 + 5*n + 1.

Original entry on oeis.org

1, 7, 15, 25, 37, 51, 67, 85, 105, 127, 151, 177, 205, 235, 267, 301, 337, 375, 415, 457, 501, 547, 595, 645, 697, 751, 807, 865, 925, 987, 1051, 1117, 1185, 1255, 1327, 1401, 1477, 1555, 1635, 1717, 1801, 1887, 1975, 2065, 2157, 2251, 2347, 2445, 2545, 2647
Offset: 0

Views

Author

Paul Barry, Apr 04 2003

Keywords

Comments

From Gary W. Adamson, Jul 29 2009: (Start)
Let (a,b) = roots to x^2 - 5*x + 1 = 0 = 4.79128... and 0.208712...
Then a(n) = (n + a) * (n + b). Example: a(5) = 51 = (5 + 4.79128...) * (5 + 0.208712...) (End)
For n > 0: a(n) = A176271(n+2,n). - Reinhard Zumkeller, Apr 13 2010
a(n-2) = n*(n+1) - 5, n >= 0, with a(-2) = -5 and a(-1) = -3, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 21 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
Numbers m > 0 such that 4m+21 is a square. - Bruce J. Nicholson, Jul 19 2017
Numbers represented as 151 in number base B. If 'digits' from B upwards are allowed then 151(2)=15, 151(3)=25, 151(4)=37, 151(5)=51 also. - Ron Knott, Nov 14 2017
If A and B are sequences satisfying the recurrence t(n) = 5*t(n-1) - t(n-2) with initial values A(0) = 1, A(1) = n+5 and B(0) = -1, B(1) = n, then a(n) = A(i)^2 - A(i-1)*A(i+1) = B(j)^2 - B(j-1)*B(j+1) for i, j > 0. - Klaus Purath, Oct 18 2020
The prime terms in this sequence are listed in A089376. The prime factors are given in A038893. With the exception of 3 and 7, each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -5 (mod p). - Klaus Purath, Nov 24 2020

Crossrefs

First row of A082110.

Programs

Formula

a(n) = 2*n + a(n-1) + 4 (with a(0)=1). - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=7, a(2)=15. - Harvey P. Dale, Apr 22 2012
Sum_{n>=0} 1/a(n) = 8/15 + Pi*tan(sqrt(21)*Pi/2)/sqrt(21) = 1.424563592286456286... . - Vaclav Kotesovec, Apr 10 2016
From G. C. Greubel, Jul 19 2017: (Start)
G.f.: (1 + 4*x - 3*x^2)/(1 - x)^3.
E.g.f.: (x^2 + 6*x + 1)*exp(x). (End)
a(n) = A014209(n+1) - 2 = A338041(2*n+1). - Hugo Pfoertner, Oct 08 2020
a(n) = A249547(n+1) - A024206(n-4), n >= 5. - Klaus Purath, Nov 24 2020

Extensions

New title (using given formula) from Hugo Pfoertner, Oct 08 2020
Showing 1-3 of 3 results.