A047215 Numbers that are congruent to {0, 2} mod 5.
0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, 90, 92, 95, 97, 100, 102, 105, 107, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 150, 152, 155, 157
Offset: 0
Links
- David Lovler, Table of n, a(n) for n = 0..1000
- Robbert Fokkink and Gandhar Joshi, Anti-recurrence sequences, arXiv:2506.13337 [math.NT], 2025. See p. 4.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Magma
[(5*n - (n mod 2))/2: n in [1..100]]; // G. C. Greubel, Jun 23 2024
-
Mathematica
Table[Floor[5 n/2], {n, 0, 100}] (* or *) LinearRecurrence[{1, 1, -1}, {0, 2, 5},101] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
-
PARI
a(n)=5*n\2 \\ Charles R Greathouse IV, Oct 17 2011
-
SageMath
[int(5*n//2) for n in range(1,101)] # G. C. Greubel, Jun 23 2024
Formula
a(n) = floor(5*n/2).
From R. J. Mathar, Sep 23 2008: (Start)
G.f.: x*(2 + 3*x)/((1 + x)*(1 - x)^2).
a(n) = 5*n/2 + ((-1)^n-1)/4.
a(n+1) - a(n) = A010693(n+1). (End)
a(n) = 5*n - a(n-1) - 8 with a(1)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = 2*n + floor(n/2). - Arkadiusz Wesolowski, Sep 19 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 + sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: (5*x*exp(x) - sinh(x))/2. - David Lovler, Aug 22 2022
Comments