A191711 Dispersion of A001068, (numbers >1 and congruent to 0, 1, 2, or 3 mod 5), by antidiagonals.
1, 2, 4, 3, 6, 9, 5, 8, 12, 14, 7, 11, 16, 18, 19, 10, 15, 21, 23, 25, 24, 13, 20, 27, 30, 32, 31, 29, 17, 26, 35, 38, 41, 40, 37, 34, 22, 33, 45, 48, 52, 51, 47, 43, 39, 28, 42, 57, 61, 66, 65, 60, 55, 50, 44, 36, 53, 72, 77, 83, 82, 76, 70, 63, 56, 49, 46
Offset: 1
Examples
Northwest corner: 1....2....3....5....7 4....6....8....11...15 9....12...16...21...27 14...18...23...30...38 19...25...32...41...52 24...31...40...51...65
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=3; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0]; f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4] Table[f[n], {n, 1, 30}] (* A001068 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191711 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191711 *)
Comments