cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 40 results. Next

A007590 a(n) = floor(n^2/2).

Original entry on oeis.org

0, 0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, 72, 84, 98, 112, 128, 144, 162, 180, 200, 220, 242, 264, 288, 312, 338, 364, 392, 420, 450, 480, 512, 544, 578, 612, 648, 684, 722, 760, 800, 840, 882, 924, 968, 1012, 1058, 1104, 1152, 1200, 1250, 1300, 1352, 1404
Offset: 0

Views

Author

Keywords

Comments

Arithmetic mean of a pair of successive triangular numbers. - Amarnath Murthy, Jul 24 2005
Maximum sum of absolute differences of cyclically adjacent elements in a permutation of (1..n). For example, with n = 9, permutation (1,9,2,8,3,7,4,6,5) has adjacent differences (8,7,6,5,4,3,2,1,4) with maximal sum a(9) = 40. - Joshua Zucker, Dec 15 2005
a(n) = maximum number of non-overlapping 1 X 2 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009 [This is easily provable - David W. Wilson, Jan 25 2014]
Number of strictly increasing arrangements of 3 nonzero numbers in -(n+1)..(n+1) with sum zero. For example, a(2) = 2 has two solutions: (-3, 1, 2) and (-2, -1, 3) each add to zero. - Michael Somos, Apr 11 2011
For n >= 4 is a(n) the minimal value v such that v = Sum_{i in S1} i = Product_{j in S2} j with disjoint union of S1, S2 = {1, 2, ..., n+1}. Example: a(4) = 8 = 3+5 = 1*2*4. - Claudio Meller, May 27 2012
Sum_{n > 1} 1/a(n) = (zeta(2) + 1)/2. - Enrique Pérez Herrero, Jun 19 2013
Apart from the initial term this is the elliptic troublemaker sequence R_n(2,4) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013
Maximum sum of displacements of elements in a permutation of (1..n). For example, with n = 9, permutation (5,6,7,8,9,1,2,3,4) has displacements (4,4,4,4,4,5,5,5,5) with maximal sum a(9) = 40. - David W. Wilson, Jan 25 2014
A245575(a(n)) mod 2 = 1, or for n > 0, where odd terms occur in A245575. - Reinhard Zumkeller, Aug 05 2014
Also the matching number of the n X n king, rook, and rook complement graphs. - Eric W. Weisstein, Jun 20 and Sep 14 2017
For n > 1, also the vertex count of the n X n white bishop graph. - Eric W. Weisstein, Jun 27 2017
This is also the number of distinct ways n^2 can be represented as the sum of two positive integers. - William Boyles, Jan 15 2018
Also the crossing number of the complete bipartite graph K_{4,n+1}. - Eric W. Weisstein, Sep 11 2018
The sequence can be obtained from A033429 by deleting the last digit of each term. - Bruno Berselli, Sep 11 2019
Starting at n=2, the number of facets of the n-dimensional Kunz cone C_(n+1). - Emily O'Sullivan, Jul 08 2023

Examples

			a(3) = 4 because 3^2/2 = 9/2 = 4.5 and floor(4.5) = 4.
a(4) = 8 because 4^2/2 = 16/2 = 8.
a(5) = 12 because 5^2/2 = 25/2 = 12.5 and floor(12.5) = 12.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of triangle A094953.
For n > 2: a(n) = sum of (n-1)-th row in triangle A101037.
A080476 is essentially the same sequence.
Cf. A000982.
Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A002620 (= R_n(1,2)), A030511 (= R_n(2,6) = R_n(4,6)), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A182834 (complement), A245575.
First differences: A052928(n+1), is first differences of A212964; partial sums: A212964(n+1), is partial sums of A052928. - Guenther Schrack, Dec 10 2017
Cf. A033429 (5*n^2).

Programs

  • Haskell
    a007550 = flip div 2 . (^ 2)  -- Reinhard Zumkeller, Aug 05 2014
    
  • Haskell
    a007590 = 0 : 0 : 0 : [ a1 + a2 - a3 + 2 | (a1, a2, a3) <- zip3 (tail (tail a007590)) (tail a007590) a007590 ] -- Luc Duponcheel, Sep 30 2020
    
  • Magma
    [Floor(n^2/2): n in [0..53]]; // Bruno Berselli, Mar 28 2011
    
  • Magma
    [Binomial(n,2)+Floor(n/2): n in [0..60]]; // Bruno Berselli, Jun 08 2017
    
  • Maple
    A007590:=n->floor(n^2/2); seq(A007590(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
  • Mathematica
    Floor[Range[0, 53]^2/2] (* Alonso del Arte, Aug 07 2013 *)
    Table[Binomial[n, 2] + Floor[n/2], {n, 0, 60}] (* Bruno Berselli, Jun 08 2017 *)
    LinearRecurrence[{2, 0, -2, 1}, {0, 2, 4, 8}, 20] (* Eric W. Weisstein, Sep 14 2017 *)
    CoefficientList[Series[-2 x/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 14 2017 *)
    Table[Floor[n^2/2], {n, 0, 20}] (* Eric W. Weisstein, Sep 11 2018 *)
  • PARI
    {a(n) = n^2 \ 2}
    
  • PARI
    {a(n) = local(v, c, m); m = n+1; forvec( v = vector( 3, i, [-m, m]), if( 0==prod( k=1, 3, v[k]), next); if( 0==sum( k=1, 3, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
    
  • PARI
    first(n) = Vec(2*x^2/((1+x)*(1-x)^3) + O(x^n), -n); \\ Iain Fox, Dec 11 2017
    
  • Python
    def A007590(n): return n**2//2 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) + 2 = 2*A002620(n) = A000217(n+1) + A004526(n). - Henry Bottomley, Mar 08 2000
a(n+1) = Sum_{k=1..n} (k + (k mod 2)). Therefore a(n) = Sum_{k=1..n} 2*floor(k/2). - William A. Tedeschi, Mar 19 2008
From R. J. Mathar, Nov 22 2008: (Start)
G.f.: 2*x^2/((1+x)*(1-x)^3).
a(n+1) - a(n) = A052928(n+1). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - R. H. Hardin, Mar 28 2011
a(n) = (2*n^2 + (-1)^n - 1)/4. - Bruno Berselli, Mar 28 2011
a(n) = ceiling((n^2-1)/2) = binomial(n+1, 2) - ceiling(n/2). - Wesley Ivan Hurt, Mar 08 2014, Jun 14 2013
a(n+1) = A014105(n) - A032528(n). - Richard R. Forberg, Aug 07 2013
a(n) = binomial(n,2) + floor(n/2). - Bruno Berselli, Jun 08 2017
a(n) = A099392(n+1) - 1. - Guenther Schrack, Dec 10 2017
E.g.f.: (x*(x + 1)*cosh(x) + (x^2 + x - 1)*sinh(x))/2. - Stefano Spezia, May 06 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi^2/12 + 1/2.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/12 - 1/2. (End)

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A045944 Rhombic matchstick numbers: a(n) = n*(3*n+2).

Original entry on oeis.org

0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the n-th term of the sequence found by reading the line from 0 in the direction 0,5,.... The spiral begins:
.
85--84--83--82--81--80
. \
56--55--54--53--52 79
/ . \ \
57 33--32--31--30 51 78
/ / . \ \ \
58 34 16--15--14 29 50 77
/ / / . \ \ \ \
59 35 17 5---4 13 28 49 76
/ / / / . \ \ \ \ \
60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
Connection to triangular numbers: a(n) = 4*T_n + S_n where T_n is the n-th triangular number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010
Also, second octagonal numbers. - Bruno Berselli, Jan 13 2011
Sequence found by reading the line from 0, in the direction 0, 16, ... and the line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
Let P denote the points from the n X n grid. A(n-1) also coincides with the minimum number of points Q needed to "block" P, that is, every line segment spanned by two points from P must contain one point from Q. - Manfred Scheucher, Aug 30 2018
Also the number of internal edges of an (n+1)*(n+1) "square" of hexagons; i.e., n+1 rows, each of n+1 edge-adjacent hexagons, stacked with minimal overhang. - Jon Hart, Sep 29 2019
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+2; {1, 2n-1, 1, 1, 1, 2n-1, 1, 18n+4}]. - Magus K. Chu, Oct 13 2022

Crossrefs

Bisection of A001859. See Comments of A135713.
Cf. second n-gonal numbers: A005449, A014105, A147875, A179986, A033954, A062728, A135705.
Cf. A056109.
Cf. A003154.

Programs

Formula

O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A002378(n) + A014105(n). - J. M. Bergot, Apr 24 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A000290(n) + 4*A000217(n). See Square Stars illustration.
a(n) = A000567(n+2) - A022144(n+1)
a(n) = A005563(n) + A001105(n).
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
a(n) = A003154(n+1) - A000567(n+1). See Split Stars illustration.
a(n) = A014105(n) + 2*A000217(n). (End)

A017329 a(n) = 10*n + 5.

Original entry on oeis.org

5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 225, 235, 245, 255, 265, 275, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 395, 405, 415, 425, 435, 445, 455, 465, 475, 485, 495, 505, 515, 525, 535
Offset: 0

Views

Author

Keywords

Comments

Continued fraction expansion of tanh(1/5). - Benoit Cloitre, Dec 17 2002
n such that 5 divides the numerator of B(2n) where B(2n) = the 2n-th Bernoulli number. - Benoit Cloitre, Jan 01 2004
5 times odd numbers. - Omar E. Pol, May 02 2008
5th transversal numbers (or 5-transversal numbers): Numbers of the 5th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 5th column in the square array A057145. - Omar E. Pol, May 02 2008
Successive sums: 5, 20, 45, 80, 125, ... (see A033429). - Philippe Deléham, Dec 08 2011
3^a(n) + 1 is divisible by 61. - Vincenzo Librandi, Feb 05 2013
If the initial 5 is changed to 1, giving 1,15,25,35,45,..., these are values of m such that A323288(m)/m reaches a new record high value. - N. J. A. Sloane, Jan 23 2019

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

a(n) = 5*A005408(n). - Omar E. Pol, Oct 19 2008
a(n) = 20*n - a(n-1) (with a(0)=5). - Vincenzo Librandi, Nov 19 2010
G.f.: 5*(x+1)/(x-1)^2. - Colin Barker, Nov 14 2012
a(n) = A057145(n+2,5). - R. J. Mathar, Jul 28 2016
E.g.f.: 5*exp(x)*(1 + 2*x). - Stefano Spezia, Feb 14 2020
Sum_{n>=0} (-1)^n/a(n) = Pi/20. - Amiram Eldar, Dec 12 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(5-sqrt(5))/2 = sqrt(2)*sin(Pi/5) = A182007/A002193.
Product_{n>=0} (1 + (-1)^n/a(n)) = phi/sqrt(2) (A094884). (End)
a(n) = (n+3)^2 - (n-2)^2. - Alexander Yutkin, Mar 16 2025
From Elmo R. Oliveira, Apr 12 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = A008587(2*n+1). (End)

A014106 a(n) = n*(2*n + 3).

Original entry on oeis.org

0, 5, 14, 27, 44, 65, 90, 119, 152, 189, 230, 275, 324, 377, 434, 495, 560, 629, 702, 779, 860, 945, 1034, 1127, 1224, 1325, 1430, 1539, 1652, 1769, 1890, 2015, 2144, 2277, 2414, 2555, 2700, 2849, 3002, 3159, 3320, 3485, 3654, 3827, 4004, 4185, 4370
Offset: 0

Views

Author

Keywords

Comments

If Y is a 2-subset of a 2n-set X then, for n >= 1, a(n-1) is the number of (2n-2)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
This sequence can also be derived from 1*(2+3)=5, 2*(3+4)=14, 3*(4+5)=27, and so forth. - J. M. Bergot, May 30 2011
Consider the partitions of 2n into exactly two parts. Then a(n) is the sum of all the parts in the partitions of 2n + the number of partitions of 2n + the total number of partition parts of 2n. - Wesley Ivan Hurt, Jul 02 2013
a(n) is the number of self-intersecting points of star polygon {(2*n+3)/(n+1)}. - Bui Quang Tuan, Mar 25 2015
Bisection of A000096. - Omar E. Pol, Dec 16 2016
a(n+1) is the number of function calls required to compute Ackermann's function ack(2,n). - Olivier Gérard, May 11 2018
a(n-1) is the least denominator d > n of the best rational approximation of sqrt(n^2-2) by x/d (see example and PARI code). - Hugo Pfoertner, Apr 30 2019
The number of cells in a loose n X n+1 rectangular spiral where n is even. See loose rectangular spiral image. - Jeff Bowermaster, Aug 05 2019
a(n-1) is the dimension of the second cohomology group of 2n+1-dimensional Heisenberg Lie algebra h_{2n+1}. - Rafik Khalfi, Jan 27 2025

Examples

			a(5-1) = 44: The best approximation of sqrt(5^2-2) = sqrt(23) by x/d with d <= k is 24/5 for all k < 44, but sqrt(23) ~= 211/44 is the first improvement. - _Hugo Pfoertner_, Apr 30 2019
		

References

  • Jolley, Summation of Series, Dover (1961).

Crossrefs

Cf. A091823. See A110325 for another version.

Programs

  • Magma
    [n*(2*n+3): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
  • Maple
    A014106 := proc(n) n*(2*n+3) ; end proc: # R. J. Mathar, Feb 13 2011
    seq(k*(2*k+3), k=1..100); # Wesley Ivan Hurt, Jul 02 2013
  • Mathematica
    Table[n (2 n + 3), {n, 0, 120}] (* Michael De Vlieger, Apr 02 2015 *)
    LinearRecurrence[{3,-3,1},{0,5,14},50] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    a(n)=2*n^2+3*n
    
  • PARI
    \\ least denominator > n in best rational approximation of sqrt(n^2-2)
    for(n=2,47,for(k=n,oo,my(m=denominator(bestappr(sqrt(n^2-2),k)));if(m>n,print1(k,", ");break(1)))) \\ Hugo Pfoertner, Apr 30 2019
    

Formula

a(n) - 1 = A091823(n). - Howard A. Landman, Mar 28 2004
A014107(-n) = a(n), A000384(n+1) = a(n)+1. - Michael Somos, Nov 06 2005
G.f.: x*(5 - x)/(1 - x)^3. - Paul Barry, Feb 27 2003
E.g.f: x*(5 + 2*x)*exp(x). - Michael Somos, Nov 06 2005
a(n) = a(n-1) + 4*n + 1, n > 0. - Vincenzo Librandi, Nov 19 2010
a(n) = 4*A000217(n) + n. - Bruno Berselli, Feb 11 2011
Sum_{n>=1} 1/a(n) = 8/9 -2*log(2)/3 = 0.4267907685155920.. [Jolley eq. 265]
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + log(2)/3 - Pi/6. - Amiram Eldar, Jul 03 2020
From Leo Tavares, Jan 27 2022: (Start)
a(n) = A000384(n+1) - 1. See Hex-tangles illustration.
a(n) = A014105(n) + n*2. See Second Hex-tangles illustration.
a(n) = 2*A002378(n) + n. See Ob-tangles illustration.
a(n) = A005563(n) + 2*A000217(n). See Trap-tangles illustration. (End)

A140090 a(n) = n*(3*n + 7)/2.

Original entry on oeis.org

0, 5, 13, 24, 38, 55, 75, 98, 124, 153, 185, 220, 258, 299, 343, 390, 440, 493, 549, 608, 670, 735, 803, 874, 948, 1025, 1105, 1188, 1274, 1363, 1455, 1550, 1648, 1749, 1853, 1960, 2070, 2183, 2299, 2418, 2540, 2665, 2793, 2924
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

This sequence is mentioned in the Guo-Niu Han's paper, chapter 6: Dictionary of the standard puzzle sequences, p. 19 (see link). - Omar E. Pol, Oct 28 2011
Number of cards needed to build an n-tier house of cards with a flat, one-card-wide roof. - Tyler Busby, Dec 28 2022

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, this sequence, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. numbers of the form n*(d*n + 10 - d)/2: A008587, A056000, A028347, A014106, A028895, A045944, A186029, A007742, A022267, A033429, A022268, A049452, A186030, A135703, A152734, A139273.

Programs

Formula

G.f.: x*(5 - 2*x)/(1 - x)^3. - Bruno Berselli, Feb 11 2011
a(n) = (3*n^2 + 7*n)/2.
a(n) = a(n-1) + 3*n + 2 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
E.g.f.: (1/2)*(3*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 117/98 - Pi/(7*sqrt(3)) - 3*log(3)/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(7*sqrt(3)) + 4*log(2)/7 - 75/98. (End)

A033583 a(n) = 10*n^2.

Original entry on oeis.org

0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 5-partite graph of order 5n, K_n,n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
10 times the squares. - Omar E. Pol, Dec 13 2008
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 10*A000290(n) = 5*A001105(n) = 2*A033429(n). - Omar E. Pol, Dec 13 2008
a(n) = A158187(n) - 1. - Reinhard Zumkeller, Mar 13 2009
a(n) = 20*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = t(5*n) - 5*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(5*n) - 5*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/120.
Product_{n>=1} (1 + 1/a(n)) = sqrt(10)*sinh(Pi/sqrt(10))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(10)*sin(Pi/sqrt(10))/Pi. (End)
From Stefano Spezia, Jul 06 2021: (Start)
O.g.f.: 10*x*(1 + x)/(1 - x)^3.
E.g.f.: 10*exp(x)*x*(1 + x). (End)

A055096 Triangle read by rows, sums of 2 distinct nonzero squares: T(n,k) = k^2+n^2, (n>=2, 1 <= k <= n-1).

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 41, 37, 40, 45, 52, 61, 50, 53, 58, 65, 74, 85, 65, 68, 73, 80, 89, 100, 113, 82, 85, 90, 97, 106, 117, 130, 145, 101, 104, 109, 116, 125, 136, 149, 164, 181, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 145, 148, 153, 160
Offset: 2

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Comments

Discovered by Bernard Frénicle de Bessy (1605?-1675). - Paul Curtz, Aug 18 2008
Terms that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0 in A222946. - Reinhard Zumkeller, Mar 23 2013
This triangle T(n,k) gives the circumdiameters for the Pythagorean triangles with a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (see the Floor van Lamoen entries or comments A063929, A063930, A002283, A003991). See also the formula section. Note that not all Pythagorean triangles are covered, e.g., (9,12,15) does not appear. - Wolfdieter Lang, Dec 03 2014

Examples

			The triangle T(n, k) begins:
n\k   1   2   3   4   5   6   7   8   9  10  11 ...
2:    5
3:   10  13
4:   17  20  25
5:   26  29  34  41
6:   37  40  45  52  61
7:   50  53  58  65  74  85
8:   65  68  73  80  89 100 113
9:   82  85  90  97 106 117 130 145
10: 101 104 109 116 125 136 149 164 181
11: 122 125 130 137 146 157 170 185 202 221
12: 145 148 153 160 169 180 193 208 225 244 265
...
13: 170 173 178 185 194 205 218 233 250 269 290 313,
14: 197 200 205 212 221 232 245 260 277 296 317 340 365,
15: 226 229 234 241 250 261 274 289 306 325 346 369 394 421,
16: 257 260 265 272 281 292 305 320 337 356 377 400 425 452 481,
...
Formatted and extended by _Wolfdieter Lang_, Dec 02 2014 (reformatted Jun 11 2015)
The successive terms are (1^2+2^2), (1^2+3^2), (2^2+3^2), (1^2+4^2), (2^2+4^2), (3^2+4^2), ...
		

Crossrefs

Sorting gives A024507. Count of divisors: A055097, Möbius: A055132. For trinv, follow A055088.
Cf. A001844 (right edge), A002522 (left edge), A033429 (central column).

Programs

  • Haskell
    a055096 n k = a055096_tabl !! (n-1) !! (k-1)
    a055096_row n = a055096_tabl !! (n-1)
    a055096_tabl = zipWith (zipWith (+)) a133819_tabl a140978_tabl
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Magma
    [n^2+k^2: k in [1..n-1], n in [2..15]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    sum2distinct_squares_array := (n) -> (((n-((trinv(n-1)*(trinv(n-1)-1))/2))^2)+((trinv(n-1)+1)^2));
  • Mathematica
    T[n_, k_]:= (n+1)^2 + k^2; Table[T[n, k], {n,15}, {k,n}]//Flatten (* Jean-François Alcover, Mar 16 2015, after Reinhard Zumkeller *)
  • SageMath
    def A055096(n,k): return n^2 + k^2
    flatten([[A055096(n,k) for k in range(1,n)] for n in range(2,16)]) # G. C. Greubel, Apr 19 2023

Formula

a(n) = sum2distinct_squares_array(n).
T(n, 1) = A002522(n).
T(n, n-1) = A001844(n-1).
T(2*n-2, n-1) = A033429(n-1).
T(n,k) = A133819(n,k) + A140978(n,k) = (n+1)^2 + k^2, 1 <= k <= n. - Reinhard Zumkeller, Mar 23 2013
T(n, k) = a*b*c/(2*sqrt(s*(s-1)*(s-b)*(s-c))) with s =(a + b + c)/2 and the substitution a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (the circumdiameter for the considered Pythagorean triangles). - Wolfdieter Lang, Dec 03 2014
From Bob Selcoe, Mar 21 2015: (Start)
T(n,k) = 1 + (n-k+1)^2 + Sum_{j=0..k-2} (4*j + 2*(n-k+3)).
T(n,k) = 1 + (n+k-1)^2 - Sum_{j=0..k-2} (2*(n+k-3) - 4*j).
Therefore: 4*(n-k+1) + Sum_{j=0..k-2} (2*(n-k+3) + 4*j) = 4*n(k-1) - Sum_{j=0..k-2} (2*(n+k-3) - 4*j). (End)
From G. C. Greubel, Apr 19 2023: (Start)
T(2*n-3, n-1) = A033429(n-1).
T(2*n-4, n-2) = A079273(n-1).
T(2*n-2, n) = A190816(n).
T(3*n-4, n-1) = 10*A000290(n-1) = A033583(n-1).
Sum_{k=1..n-1} T(n, k) = A331987(n-1).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226141(n-1). (End)

Extensions

Edited: in T(n, k) formula by Reinhard Zumkeller k < n replaced by k <= n. - Wolfdieter Lang, Dec 02 2014
Made definition more precise, changed offset to 2. - N. J. A. Sloane, Mar 30 2015

A032527 Concentric pentagonal numbers: floor( 5*n^2 / 4 ).

Original entry on oeis.org

0, 1, 5, 11, 20, 31, 45, 61, 80, 101, 125, 151, 180, 211, 245, 281, 320, 361, 405, 451, 500, 551, 605, 661, 720, 781, 845, 911, 980, 1051, 1125, 1201, 1280, 1361, 1445, 1531, 1620, 1711, 1805, 1901, 2000, 2101, 2205, 2311, 2420, 2531, 2645, 2761, 2880, 3001
Offset: 0

Views

Author

Keywords

Comments

Also A033429 and A062786 interleaved. - Omar E. Pol, Sep 28 2011
Partial sums of A047209. - Reinhard Zumkeller, Jan 07 2012
From Wolfdieter Lang, Aug 06 2013: (Start)
a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*5)/4, the norm for integers a + b*omega(5), a, b rational integers, in the quadratic number field Q(sqrt(5)), where omega(5) = (1 + sqrt(5))/2 (golden section).
a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = n^2 + n*floor(n/2) - floor(n/2)^2 = floor(5*n^2/4) (the last eq. checks for even and odd n). (End)

Examples

			From _Omar E. Pol_, Sep 28 2011 (Start):
Illustration of initial terms (In a precise representation the pentagons should appear strictly concentric):
.
.                                             o
.                                           o   o
.                            o            o   o   o
.                          o   o        o   o   o   o
.               o        o   o   o    o   o   o   o   o
.             o   o    o   o   o   o   o   o     o   o
.      o    o   o   o   o   o o   o     o   o o o   o
.    o   o   o     o     o       o       o         o
. o   o o     o o o       o o o o         o o o o o
.
. 1    5        11          20                31
.
(End)
		

Crossrefs

Cf. A000290, A032528, A077043, A195041. Column 5 of A195040. [Omar E. Pol, Sep 28 2011]

Programs

Formula

a(n) = 5*n^2/4+((-1)^n-1)/8. - Omar E. Pol, Sep 28 2011
G.f.: x*(1+3*x+x^2)/(1-2*x+2*x^3-x^4). - Colin Barker, Jan 06 2012
a(n) = a(-n); a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>0, a(-1) = 1, a(0) = 0, a(1) = 1, a(2) = 5, n >= 3. (See the Bruno Berselli recurrence and a general comment for primes 1 (mod 4) under A227541). - Wolfdieter Lang, Aug 08 2013
a(n) = Sum_{j=1..n} Sum{i=1..n} ceiling((i+j-n+1)/2). - Wesley Ivan Hurt, Mar 12 2015
Sum_{n>=1} 1/a(n) = Pi^2/30 + tan(Pi/(2*sqrt(5)))*Pi/sqrt(5). - Amiram Eldar, Jan 16 2023

Extensions

New name from Omar E. Pol, Sep 28 2011

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A022267 a(n) = n*(9*n + 1)/2.

Original entry on oeis.org

0, 5, 19, 42, 74, 115, 165, 224, 292, 369, 455, 550, 654, 767, 889, 1020, 1160, 1309, 1467, 1634, 1810, 1995, 2189, 2392, 2604, 2825, 3055, 3294, 3542, 3799, 4065, 4340, 4624, 4917, 5219, 5530, 5850, 6179
Offset: 0

Views

Author

Keywords

Comments

From Floor van Lamoen, Jul 21 2001: (Start)
Write 0, 1, 2, 3, 4, ... in a triangular spiral; then a(n) is the sequence found by reading the line from 0 in the direction 0, 5, ... . The spiral begins:
.
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
.
(End)
a(n) is the sum of n consecutive integers starting from 4*n+1: (5), (9+10), (13+14+15), ... - Klaus Purath, Jul 07 2020
a(n) with n>0 are the numbers with the periodic length 3 in the Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022

Crossrefs

Cf. similar sequences listed in A254963.
Cf. similar sequences listed in A022289.

Programs

  • Maple
    seq(binomial(9*n+1,2)/9, n=0..37); # Zerinvary Lajos, Jan 21 2007
  • Mathematica
    Table[ n (9 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 19}, 40] (* Harvey P. Dale, Jul 01 2013 *)
  • PARI
    vector(100,n,(n-1)*(9*n-8)/2) \\ Derek Orr, Feb 06 2015

Formula

a(n) = A110449(n, 4) for n>3.
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 4*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A000566(n). (End)
a(n) = 9*n + a(n-1) - 4 with n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A218470(9*n+4). - Philippe Deléham, Mar 27 2013
a(n) = A000217(5*n) - A000217(4*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (1/2)*(9*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017
a(n) = A060544(n+1) - A016813(n). - Leo Tavares, Mar 20 2022
Showing 1-10 of 40 results. Next