cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: William Boyles

William Boyles's wiki page.

William Boyles has authored 5 sequences.

A353201 a(n) = smallest m such that f(m,x) is divisible by g(n,x), where f(m,x) = U(m-1,x/2), and U(k,x) is the k-th Chebyshev polynomial of the second kind over the field GF(2); g(n,x) is the polynomial over GF(2) whose coefficients correspond to the binary digits of n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 5, 4, 15, 6, 9, 12, 7, 10, 6, 8, 6, 30, 17, 12, 5, 18, 21, 12, 15, 14, 15, 20, 9, 6, 17, 8, 51, 6, 35, 60, 31, 34, 9, 12, 31, 10, 15, 36, 30, 42, 33, 24, 45, 30, 12, 28, 51, 30, 11, 20, 21, 18, 33, 12, 31, 34, 15, 8, 15, 102, 65, 12, 9, 70, 93, 60, 63, 62, 42, 68
Offset: 1

Author

William Boyles, Jun 22 2022

Keywords

Comments

g(n,x) divides f(m,x) if and only if m is a multiple of a(n).

Examples

			For n=13, g(13,x) = 1*x^3 + 1*x^2 + 0*x + 1 because 13 is 1101 in binary. f(7,x) is the smallest that is divisible by g(13,x), so a(13) = 7.
		

A354463 a(n) is the number of trailing zeros in (2^n)!.

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 14, 31, 63, 126, 253, 509, 1021, 2045, 4094, 8189, 16380, 32763, 65531, 131067, 262140, 524285, 1048571, 2097146, 4194297, 8388603, 16777208, 33554424, 67108858, 134217720, 268435446, 536870902, 1073741816, 2147483642, 4294967289, 8589934584, 17179869176, 34359738358, 68719476729
Offset: 0

Author

William Boyles, May 31 2022

Keywords

Examples

			For n = 4, (2^4)! = 20922789888000, which has a(4) = 3 trailing zeros.
		

Crossrefs

Programs

  • Haskell
    seq n = aux (2 ^ n) 0
      where
        aux x acc
          | x < 5 = acc
          | otherwise = aux y (acc + y)
          where
            y = x `div` 5
    
  • Mathematica
    a[n_]:=IntegerExponent[(2^n)!]; Array[a,38,0] (* Stefano Spezia, Jun 01 2022 *)
  • PARI
    a(n) = val(1<David A. Corneth, Jun 01 2022
    
  • Python
    from sympy import factorial, multiplicity
    def a(n): return multiplicity(5, factorial(2**n, evaluate=False))
    print([a(n) for n in range(39)]) # Michael S. Branicky, Jun 01 2022
    
  • Python
    def A354463(n):
        c, m = 0, 2**n
        while m >= 5:
            m //= 5
            c += m
        return c # Chai Wah Wu, Jun 02 2022

Formula

a(n) = A027868(A000079(n)). - Michel Marcus, Jun 01 2022
a(n) = 2^(n-2) - A055223(n) for n >= 2. - John Keith, Jun 06 2022

A353071 Maximum number of clicks needed to solve any solvable Lights Out problem on an n X n grid.

Original entry on oeis.org

1, 4, 9, 7, 15, 36, 49, 64, 37, 100, 65, 144, 169, 123, 225, 124, 199, 324, 197, 400, 441, 484
Offset: 1

Author

William Boyles, Apr 21 2022

Keywords

Comments

a(n) = n^2 if and only if A159257(n) = 0.
a(n) >= A075464(n).
If n = 6k-1 for some integer k, then a(n) <= 26k^2 - 12k + 1. This upper bound is equal to a(n) when A159257(n) = 2. Further, it is conjectured that if A159257(n) = 2, then n = 6k-1 for some integer k.
It is conjectured that if A159257(n) = 4, then n = 5k-1 for some integer k, and a(n) = 17k^2 - 10k.
It is conjectured that if A159257(n) = 6, then n = 12k-1 for some integer k, and a(n) = 88k^2 - 24k + 1
It is conjectured that if A159257(n) = 8, then either n = 10k-1 or n = 17k-1 for some integer k. If n = 10k-1, then a(n) = 60k^2 - 20k - 3. If n = 17k-1, then a(n) = 161k^2 - 34k - 3.
It is conjectured that if A159257(n) = 10, then n = 30k-1 for some integer k, and a(n) = 506k^2 - 60k - 3.
239 <= a(23) <= 305.

Crossrefs

A307826 The number of integers r such that all primes above a certain value have the form primorial(n)*q +- r.

Original entry on oeis.org

1, 1, 4, 24, 240, 2880, 46080, 829440, 18247680, 510935040, 15328051200, 551809843200, 22072393728000, 927040536576000, 42643864682496000, 2217480963489792000, 128613895882407936000, 7716833752944476160000, 509311027694335426560000
Offset: 1

Author

William Boyles, Apr 30 2019

Keywords

Examples

			For n=3, the third primorial is 2*3*5=30, and all primes at least 17 have the form 30n +- (1,7,11,13). So, a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[n_] := EulerPhi[Product[Prime[i], {i, 1, n}]]/2; Array[a, 20] (* Amiram Eldar, Jul 08 2019 *)
  • Python
    import sympy
    def A307826(n):
        sympy.sieve.extend_to_no(n)
        s = list(sympy.sieve._list)
        prod = s[0]
        print("1")
        for i in range(1,n):
            prod*=s[i]
            print(sympy.ntheory.factor_.totient(prod)//2)

Formula

a(n) = Product_{k=1..n} A156037(k).
a(n) = A000010(A002110(n))/2 for n > 1.
a(n) = A005867(n)/2 for n > 1. - Alexandre Herrera, Apr 16 2023

A275534 Number of primes of the form x^2 + y^2 less than or equal to 2*n^2.

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 12, 15, 18, 22, 25, 29, 33, 37, 43, 46, 51, 56, 62, 68, 75, 79, 86, 93, 102, 107, 114, 119, 127, 136, 143, 150, 160, 169, 179, 184, 195, 206, 215, 223, 233, 242, 254, 264, 274, 285, 297, 307, 318, 330, 339, 350, 362, 376, 386, 400, 415, 428, 441, 452, 465, 483, 498, 510, 525, 541
Offset: 1

Author

William Boyles, Jul 31 2016

Keywords

Comments

Number of terms in A002313 that are less than A001105(n).

Crossrefs

Programs

  • Mathematica
    nn = 66; Table[Count[Take[#, PrimePi[2 n^2]], k_ /; k > 0], {n, nn}] &@
    SquaresR[2, Prime@ Range@ PrimePi[2 nn^2]] (* Michael De Vlieger, Aug 01 2016 *)
  • PARI
    a(n)=my(s); forprime(p=2,2*n^2, if(p%4<3, s++)); s \\ Charles R Greathouse IV, Sep 02 2016