cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alexandre Herrera

Alexandre Herrera's wiki page.

Alexandre Herrera has authored 17 sequences. Here are the ten most recent ones:

A383672 Squarefree numbers k such that k^2+1 is not squarefree.

Original entry on oeis.org

7, 38, 41, 43, 57, 70, 82, 93, 107, 118, 143, 157, 182, 193, 218, 239, 251, 257, 282, 293, 307, 318, 327, 357, 382, 393, 407, 418, 437, 443, 457, 482, 493, 515, 518, 543, 557, 577, 582, 593, 606, 607, 618, 643, 682, 707, 718, 743, 746, 757, 782, 793, 807, 818, 829, 843, 857, 893
Offset: 1

Author

Alexandre Herrera, May 04 2025

Keywords

Examples

			38 = 2*19 is squarefree but 38*38 + 1 = 1445 = 5*17*17 is not squarefree.
		

Crossrefs

Intersection of A005117 and A049532.
Includes A141932 and A141941.

Programs

  • Maple
    filter:= proc(n) numtheory:-issqrfree(n) and not numtheory:-issqrfree(n^2+1) end proc:
    select(filter, [$1..1000]); # Robert Israel, May 04 2025
  • Mathematica
    Select[Range[900],SquareFreeQ[#] && !SquareFreeQ[#^2+1] &] (* Stefano Spezia, May 04 2025 *)
  • PARI
    isok(k) = issquarefree(k) && !issquarefree(k^2+1); \\ Michel Marcus, May 04 2025
  • Python
    from sympy import factorint
    def is_squarefree(n):
        return all(exponent == 1 for exponent in factorint(n).values())
    print([a for a in range(1,900) if is_squarefree(a) and not(is_squarefree(a*a + 1))])
    

A379407 a(n) is the smallest semiprime > primorial(n).

Original entry on oeis.org

4, 9, 33, 213, 2315, 30031, 510515, 9699691, 223092871, 6469693233, 200560490134, 7420738134814, 304250263527221, 13082761331670031, 614889782588491414, 32589158477190044737, 1922760350154212639074, 117288381359406970983271, 7858321551080267055879091
Offset: 1

Author

Alexandre Herrera, Dec 22 2024

Keywords

Examples

			primorial(2) = 2*3 = 6 so a(2) = 9 because 9 = 3*3 is next semiprime > 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m = Times @@ Prime[Range[n]] + 1}, While[PrimeOmega[m] != 2, m++]; m]; Array[a, 20] (* Amiram Eldar, Jan 01 2025 *)
  • Python
    import sympy
    def ok(n): return sum(sympy.factorint(n).values()) == 2
    primorial = 1
    l = []
    for i in range(1,20):
        primorial *= sympy.prime(i)
        next_sp = primorial + 1
        while not(ok(next_sp)):
            next_sp += 1
        l.append(next_sp)
    print(l)

Formula

a(n) = A106325(A002110(n)+1).

A379036 Indices of zeros in binary concatenation of primes.

Original entry on oeis.org

1, 5, 11, 16, 19, 20, 21, 24, 25, 29, 36, 44, 45, 47, 50, 52, 53, 56, 58, 62, 69, 71, 76, 83, 86, 87, 88, 89, 93, 94, 95, 100, 101, 103, 104, 107, 108, 114, 116, 117, 121, 124, 125, 129, 130, 131, 132, 136, 137, 139, 143, 144, 150, 152, 157, 160, 165, 166, 167
Offset: 1

Author

Alexandre Herrera, Dec 14 2024

Keywords

Comments

The initial bit is labeled as bit 0.

Examples

			The primes, their binary expansions, and positions of successive zero bits, begin
   prime    2  3   5   7   11 ...
   binary  10 11 101 111 1011 ...
   zeros    ^     ^       ^
   a(n) =   1     5      11   ...
		

Crossrefs

Programs

  • Mathematica
    seq[lim_] := -1 + Position[Flatten@ IntegerDigits[Prime[Range[lim]], 2], 0] // Flatten; seq[30] (* Amiram Eldar, Dec 31 2024 *)
  • Python
    import sympy
    l = []
    bin_primes = ""
    for i in range(1,27):
        bin_primes += bin(sympy.prime(i))[2:]
    for i in range(len(bin_primes)):
        if bin_primes[i] == '0':
            l.append(i)
    print(l)

A373499 a(n) = Sum_{i=1..n-1} binomial(prime(n),prime(i)).

Original entry on oeis.org

0, 3, 20, 77, 1012, 3445, 41208, 166041, 2886776, 176545765, 707922076, 44154219471, 628182427994, 2318296787282, 32073418630027, 2032575090770969, 140272398486718041, 558946109921421607, 34092092791668401412, 554618378100523846567, 2286090868263899514704
Offset: 1

Author

Alexandre Herrera, Jun 06 2024

Keywords

Examples

			For n = 3, a(3) = binomial(prime(3),prime(1)) + binomial(prime(3),prime(2)) = binomial(5,2) + binomial(5,3) = 10 + 10 = 20.
		

Crossrefs

Cf. A000040.

Programs

  • Mathematica
    Table[Sum[Binomial[Prime[n], Prime[i]], {i, n-1}], {n, 25}] (* Paolo Xausa, Jun 29 2024 *)
  • PARI
    a(n) = sum(i=1, n-1, binomial(prime(n), prime(i))); \\ Michel Marcus, Jun 25 2024
  • Python
    from sympy import binomial
    from sympy import prime
    def a(n): return sum(binomial(prime(n),prime(i)) for i in range(1,n))
    print([a(n) for n in range(1,22)])
    

Formula

a(1) = 0, a(n) = Sum_{i=1..n-1} binomial(A000040(n),A000040(i)).

A373299 Numbers prime(k) such that prime(k) - prime(k-1) = prime(k+2) - prime(k+1).

Original entry on oeis.org

7, 11, 13, 17, 29, 41, 59, 79, 101, 103, 107, 113, 139, 163, 181, 193, 227, 257, 269, 311, 359, 379, 397, 419, 421, 439, 461, 487, 491, 547, 569, 577, 599, 691, 701, 709, 761, 811, 823, 857, 863, 881, 887, 919, 983, 1021, 1049, 1051, 1091, 1109, 1163
Offset: 1

Author

Alexandre Herrera, May 31 2024

Keywords

Examples

			7 is in the list because the prime previous to 7 is 5 and the next primes after 7 are 11 and 13, so we have 7 - 5 = 13 - 11 = 2.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime,[seq(i,i=3..10^4,2)]):
    G:= P[2..-1]-P[1..-2]: nG:= nops(G):
    J:= select(t -> G[t-1]=G[t+1],[$2..nG-1]):
    P[J]; # Robert Israel, May 31 2024
  • Mathematica
    Select[Partition[Prime[Range[200]], 4, 1], #[[2]] - #[[1]] == #[[4]] - #[[3]] &][[;; , 2]] (* Amiram Eldar, May 31 2024 *)
  • Python
    from sympy import prime
    def ok(k):
        return prime(k)-prime(k-1) == prime(k+2)-prime(k+1)
    print([prime(k) for k in range(2,200) if ok(k)])
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        p, q, r, s = [2, 3, 5, 7]
        while True:
            if q-p == s-r: yield q
            p, q, r, s = q, r, s, nextprime(s)
    print(list(islice(agen(), 60))) # Michael S. Branicky, May 31 2024

Formula

a(n) = A151800(A022885(n)).

A371981 Number of primes between two successive Sophie Germain primes, with Sophie Germain primes not themselves included in the count.

Original entry on oeis.org

0, 0, 1, 3, 0, 2, 2, 6, 0, 5, 1, 7, 0, 1, 7, 0, 1, 5, 1, 9, 8, 1, 2, 7, 2, 10, 7, 2, 0, 3, 3, 3, 2, 4, 15, 5, 7, 0, 1, 2, 8, 14, 0, 7, 13, 4, 1, 3, 4, 0, 5, 3, 1, 17, 9, 9, 0, 2, 3, 5, 4, 1, 0, 7, 2, 14, 7, 2, 6, 0, 6, 7, 0, 18, 0, 6, 1, 7, 9, 3, 2, 0, 5, 28, 5, 3, 3, 2, 1, 5, 6, 7, 3, 15, 2
Offset: 1

Author

Alexandre Herrera, Apr 15 2024

Keywords

Comments

Number of primes between A005384(n) and A005384(n+1).

Examples

			a(4) = 3 because there are 3 primes between 11 and 23: 13, 17 and 19.
		

Crossrefs

Programs

  • Mathematica
    -1 + Subtract @@ Map[PrimePi, {Last[#], First[#]}] & /@ Partition[Select[Prime[Range[500]], PrimeQ[2 # + 1] &], 2, 1] (* Michael De Vlieger, Apr 19 2024 *)
  • PARI
    lista(nn) = my(vp = select(p->isprime(2*p+1), primes(nn)), wp = apply(primepi, vp)); vector(#wp-1, k, wp[k+1]-wp[k]-1); \\ Michel Marcus, May 21 2024
  • Python
    from sympy import isprime
    l = []
    s = 0
    for i in range(3,3800):
        if isprime(i):
            if isprime(2*i + 1):
                l.append(s)
                s = 0
            else:
                s += 1
    print(l)
    

Formula

a(n) = A000720(A005384(n+1)) - A000720(A005384(n)) - 1. - Michael De Vlieger, Apr 19 2024

A372730 Number of primes <= A005867(n).

Original entry on oeis.org

0, 0, 1, 4, 15, 92, 757, 8899, 125261, 2232782, 51902553, 1327191561, 41351244491, 1452937916515, 54332144724834, 2246960940148460, 105818707666943651, 5595105626396158784, 308241771351984486729, 18772520681296116861073
Offset: 0

Author

Alexandre Herrera, May 11 2024

Keywords

Examples

			a(3) = 4 because there are 4 primes less than A005867(3) = 8: 2, 3, 5 and 7.
		

Crossrefs

Programs

  • PARI
    A372730(n) = primepi(prod(k=1, n, prime(k)-1)); \\ Antti Karttunen, May 22 2024
  • Python
    from sympy import prime,primepi
    p = 1
    l = [0]
    for i in range(1,12):
        p *= (prime(i) - 1)
        l.append(primepi(p))
    print(l)
    

Formula

a(n) = A000720(A005867(n)).

Extensions

a(9)-a(11) from Antti Karttunen, May 22 2024
a(12)-a(16) from Amiram Eldar, May 22 2024
a(17)-a(18) from Chai Wah Wu, Jun 04 2024
a(19) from Chai Wah Wu, Jun 05 2024

A372113 Numbers k for which (k-1)/2 and 2*k+1 are both primes.

Original entry on oeis.org

5, 11, 15, 23, 35, 39, 63, 75, 83, 95, 119, 135, 179, 215, 219, 299, 303, 315, 359, 363, 455, 459, 483, 515, 543, 615, 663, 699, 719, 735, 779, 803, 879, 915, 923, 935, 975, 999, 1019, 1043, 1143, 1155, 1175, 1199, 1295, 1323, 1355, 1383, 1439, 1539, 1595, 1659, 1679, 1755, 1763, 1815, 1859, 1883
Offset: 1

Author

Alexandre Herrera, Apr 19 2024

Keywords

Comments

Intersection of A072055 and A104635.

Examples

			5 is a term because (5-1)/2 = 2 is prime and 2*5+1 = 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 2000, 2], AllTrue[{(# - 1)/2, 2 # + 1}, PrimeQ] &] (* Michael De Vlieger, Apr 19 2024 *)
  • Python
    from sympy import isprime
    def a(n): return n%2 == 1 and isprime((n-1)>>1) and isprime(2*n+1)
    print([n for n in range(2, 1900) if a(n)])

Formula

a(n) = 2*A023213(n) + 1.
a(n) = (A126330(n)-1)/2.

A371980 Sophie Germain primes p such that 4*p + 3 is a composite number.

Original entry on oeis.org

3, 23, 29, 53, 83, 113, 131, 173, 191, 233, 239, 251, 281, 293, 419, 431, 443, 491, 593, 641, 653, 659, 683, 743, 761, 809, 911, 953, 1013, 1049, 1103, 1223, 1289, 1439, 1499, 1559, 1583, 1601, 1733, 1973, 2003, 2039, 2063, 2069, 2129, 2141, 2273, 2339, 2351, 2393, 2399, 2543, 2549, 2693, 2741, 2753
Offset: 1

Author

Alexandre Herrera, Apr 15 2024

Keywords

Examples

			a(1) = 3 is prime and 2*3 + 1 = 7 also but not 4*3 + 3 = 15.
		

Crossrefs

Cf. A005384.

Programs

  • Mathematica
    Select[Prime[Range[410]], And[PrimeQ[2 # + 1], CompositeQ[4 # + 3]] &] (* Michael De Vlieger, Apr 19 2024 *)
  • Python
    import sympy as sp
    l = []
    for i in range(2,2800):
        if sp.isprime(i) and sp.isprime(2*i + 1) and not(sp.isprime(4*i + 3)):
            l.append(i)
    print(l)

A371035 a(n) = A086330(prime(n)).

Original entry on oeis.org

0, 2, 7, 18, 43, 73, 113, 159, 203, 334, 496, 706, 863, 874, 1097, 1124, 1560, 2033, 2073, 2409, 2462, 3336, 3345, 3634, 3958, 4657, 5198, 5284, 5186, 6096, 7801, 8594, 9270, 9167, 10659, 10578, 12375, 12227, 13221, 13769, 15958, 16458, 18820, 17919, 18722
Offset: 1

Author

Alexandre Herrera, Apr 10 2024

Keywords

Comments

The sequence sometimes decreases, as for example at a(29) = 5186 < 5284 = a(28).

Examples

			For n = 3, a(n) = A086330(prime(3)) = A086330(5) = (2! mod 5) + (3! mod 5) + (4! mod 5) = 2 + 1 + 4 = 7.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prime(n)); sum(m=2, p, m! % p); \\ Michel Marcus, Apr 11 2024
  • Python
    from sympy import isprime
    l = []
    for i in range(2,185):
        if isprime(i):
            sum = 0
            reminder = 1
            for j in range(2, i):
                reminder = (reminder * j) % i
                sum += reminder
            l.append(sum)
    print(l)
    
  • Python
    from sympy import prime
    def A371035(n):
        a, c, p = 0, 1, prime(n)
        for m in range(2,p):
            c = c*m%p
            a += c
        return a # Chai Wah Wu, Apr 16 2024