cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A047209 Numbers that are congruent to {1, 4} mod 5.

Original entry on oeis.org

1, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 39, 41, 44, 46, 49, 51, 54, 56, 59, 61, 64, 66, 69, 71, 74, 76, 79, 81, 84, 86, 89, 91, 94, 96, 99, 101, 104, 106, 109, 111, 114, 116, 119, 121, 124, 126, 129, 131, 134, 136, 139, 141, 144, 146, 149, 151, 154
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 72 ).
Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2 - 1 == 0 (mod h); in our case, a(n)^2 - 1 == 0 (mod 5). - Bruno Berselli, Nov 17 2010
The sum of the alternating series (-1)^(n+1)/a(n) from n=1 to infinity is (Pi/5)*cot(Pi/5), that is (1/5)*sqrt(1 + 2/sqrt(5))*Pi. - Jean-François Alcover, May 03 2013
These numbers appear in the product of a Rogers-Ramanujan identity. See A003114 also for references. - Wolfdieter Lang, Oct 29 2016
Let m be a product of any number of terms of this sequence. Then m - 1 or m + 1 is divisible by 5. Closed under multiplication. - David A. Corneth, May 11 2018

Crossrefs

Cf. A005408 (n=1 or 3 mod 4), A007310 (n=1 or 5 mod 6).
Cf. A045468 (primes), A032527 (partial sums).

Programs

Formula

G.f.: (1+3x+x^2)/((1-x)(1-x^2)).
a(n) = floor((5n-2)/2). [corrected by Reinhard Zumkeller, Jul 19 2013]
a(1) = 1, a(n) = 5(n-1) - a(n-1). - Benoit Cloitre, Apr 12 2003
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = (10*n + (-1)^n - 5)/4.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 5 for n > 2.
a(n) = 5*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
a(n)^2 = 5*A036666(n) + 1 (cf. also Comments). (End)
a(n) = 5*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
E.g.f.: 1 + ((10*x - 5)*exp(x) + exp(-x))/4. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = phi (A001622).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/5) * cosec(Pi/5) (A352324). (End)

Extensions

Edited by Michael Somos, Sep 22 2002

A032528 Concentric hexagonal numbers: floor(3*n^2/2).

Original entry on oeis.org

0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601, 3750
Offset: 0

Views

Author

Keywords

Comments

From Omar E. Pol, Aug 20 2011: (Start)
Cellular automaton on the hexagonal net. The sequence gives the number of "ON" cells in the structure after n-th stage. A007310 gives the first differences. For a definition without words see the illustration of initial terms in the example section. Note that the cells become intermittent. A083577 gives the primes of this sequences.
A033581 and A003154 interleaved.
Row sums of an infinite square array T(n,k) in which column k lists 2*k-1 zeros followed by the numbers A008458 (see example). (End)
Sequence found by reading the line from 0, in the direction 0, 1, ... and the same line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Main axis perpendicular to A045943 in the same spiral. - Omar E. Pol, Sep 08 2011

Examples

			From _Omar E. Pol_, Aug 20 2011: (Start)
Using the numbers A008458 we can write:
  0, 1, 6, 12, 18, 24, 30, 36, 42,  48,  54, ...
  0, 0, 0,  1,  6, 12, 18, 24, 30,  36,  42, ...
  0, 0, 0,  0,  0,  1,  6, 12, 18,  24,  30, ...
  0, 0, 0,  0,  0,  0,  0,  1,  6,  12,  18, ...
  0, 0, 0,  0,  0,  0,  0,  0,  0,   1,   6, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 6, 13, 24, 37, 54, 73, 96, 121, 150, ...
...
Illustration of initial terms as concentric hexagons:
.
.                                         o o o o o
.                         o o o o        o         o
.             o o o      o       o      o   o o o   o
.     o o    o     o    o   o o   o    o   o     o   o
. o  o   o  o   o   o  o   o   o   o  o   o   o   o   o
.     o o    o     o    o   o o   o    o   o     o   o
.             o o o      o       o      o   o o o   o
.                         o o o o        o         o
.                                         o o o o o
.
. 1    6        13           24               37
.
(End)
		

Crossrefs

Programs

Formula

From Joerg Arndt, Aug 22 2011: (Start)
G.f.: (x+4*x^2+x^3)/(1-2*x+2*x^3-x^4) = x*(1+4*x+x^2)/((1+x)*(1-x)^3).
a(n) = +2*a(n-1) -2*a(n-3) +1*a(n-4). (End)
a(n) = (6*n^2+(-1)^n-1)/4. - Bruno Berselli, Aug 22 2011
a(n) = A184533(n), n >= 2. - Clark Kimberling, Apr 20 2012
First differences of A011934: a(n) = A011934(n) - A011934(n-1) for n>0. - Franz Vrabec, Feb 17 2013
From Paul Curtz, Mar 31 2019: (Start)
a(-n) = a(n).
a(n) = a(n-2) + 6*(n-1) for n > 1.
a(2*n) = A033581(n).
a(2*n+1) = A003154(n+1). (End)
E.g.f.: (3*x*(x + 1)*cosh(x) + (3*x^2 + 3*x - 1)*sinh(x))/2. - Stefano Spezia, Aug 19 2022
Sum_{n>=1} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Jan 16 2023

Extensions

New name and more terms a(41)-a(50) from Omar E. Pol, Aug 20 2011

A195040 Square array read by antidiagonals with T(n,k) = k*n^2/4+(k-4)*((-1)^n-1)/8, n>=0, k>=0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 0, 7, 8, 7, 4, 1, 0, 1, 9, 13, 12, 9, 5, 1, 0, 0, 13, 18, 19, 16, 11, 6, 1, 0, 1, 16, 25, 27, 25, 20, 13, 7, 1, 0, 0, 21, 32, 37, 36, 31, 24, 15, 8, 1, 0, 1, 25, 41, 48, 49, 45, 37, 28, 17, 9, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also, if k >= 2 and m = 2*k, then column k lists the numbers of the form k*n^2 and the centered m-gonal numbers interleaved.
For k >= 3, this is also a table of concentric polygonal numbers. Column k lists the concentric k-gonal numbers.
It appears that the first differences of column k are the numbers that are congruent to {1, k-1} mod k, if k >= 3.

Examples

			Array begins:
  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ...
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5,   6,   7,   8,   9, ...
  1,   3,   5,   7,   9,  11,  13,  15,  17,  19, ...
  0,   4,   8,  12,  16,  20,  24,  28,  32,  36, ...
  1,   7,  13,  19,  25,  31,  37,  43,  49,  55, ...
  0,   9,  18,  27,  36,  45,  54,  63,  72,  81, ...
  1,  13,  25,  37,  49,  61,  73,  85,  97, 109, ...
  0,  16,  32,  48,  64,  80,  96, 112, 128, 144, ...
  1,  21,  41,  61,  81, 101, 121, 141, 161, 181, ...
  0,  25,  50,  75, 100, 125, 150, 175, 200, 225, ...
  ...
		

Crossrefs

Rows n: A000004 (n=0), A000012 (n=1), A001477 (n=2), A005408 (n=3), A008586 (n=4), A016921 (n=5), A008591 (n=6), A017533 (n=7), A008598 (n=8), A215145 (n=9), A008607 (n=10).
Columns k: A000035 (k=0), A004652 (k=1), A000982 (k=2), A077043 (k=3), A000290 (k=4), A032527 (k=5), A032528 (k=6), A195041 (k=7), A077221 (k=8), A195042 (k=9), A195142 (k=10), A195043 (k=11), A195143 (k=12), A195045 (k=13), A195145 (k=14), A195046 (k=15), A195146 (k=16), A195047 (k=17), A195147 (k=18), A195048 (k=19), A195148 (k=20), A195049 (k=21), A195149 (k=22), A195058 (k=23), A195158 (k=24).

Programs

  • GAP
    nmax:=13;; T:=List([0..nmax],n->List([0..nmax],k->k*n^2/4+(k-4)*((-1)^n-1)/8));; b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 19 2018
  • Maple
    A195040 := proc(n,k)
            k*n^2/4+((-1)^n-1)*(k-4)/8 ;
    end proc:
    for d from 0 to 12 do
            for k from 0 to d do
                    printf("%d,",A195040(d-k,k)) ;
            end do:
    end do; # R. J. Mathar, Sep 28 2011
  • Mathematica
    t[n_, k_] := k*n^2/4+(k-4)*((-1)^n-1)/8; Flatten[ Table[ t[n-k, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011 *)

A195143 a(n) = n-th concentric 12-gonal number.

Original entry on oeis.org

0, 1, 12, 25, 48, 73, 108, 145, 192, 241, 300, 361, 432, 505, 588, 673, 768, 865, 972, 1081, 1200, 1321, 1452, 1585, 1728, 1873, 2028, 2185, 2352, 2521, 2700, 2881, 3072, 3265, 3468, 3673, 3888, 4105, 4332, 4561, 4800, 5041, 5292, 5545, 5808, 6073, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric dodecagonal numbers. [corrected by Ivan Panchenko, Nov 09 2013]
Sequence found by reading the line from 0, in the direction 0, 12,..., and the same line from 1, in the direction 1, 25,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Main axis, perpendicular to A028896 in the same spiral.
Partial sums of A091998. - Reinhard Zumkeller, Jan 07 2012
Column 12 of A195040. - Omar E. Pol, Sep 28 2011

Crossrefs

A135453 and A069190 interleaved.
Cf. A016921 (6n+1), A016969 (6n+5), A091998 (positive integers of the form 12*k +- 1), A092242 (positive integers of the form 12*k +- 5).

Programs

  • Haskell
    a195143 n = a195143_list !! n
    a195143_list = scanl (+) 0 a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(3*n^2+(-1)^n-1): n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    Table[Sum[2*(-1)^(n - k + 1) + 6*k - 3, {k, n}], {n, 0, 47}] (* L. Edson Jeffery, Sep 14 2014 *)

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 3*n^2+(-1)^n-1.
a(n) = -a(n-1) + 6*n^2 - 6*n + 1. (End)
G.f.: -x*(1+10*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = Sum_{k=1..n} (2*(-1)^(n-k+1) + 3*(2*k-1)), n>0, a(0) = 0. - L. Edson Jeffery, Sep 14 2014
Sum_{n>=1} 1/a(n) = Pi^2/72 + tan(Pi/sqrt(6))*Pi/(4*sqrt(6)). - Amiram Eldar, Jan 16 2023

A195145 Concentric 14-gonal numbers.

Original entry on oeis.org

0, 1, 14, 29, 56, 85, 126, 169, 224, 281, 350, 421, 504, 589, 686, 785, 896, 1009, 1134, 1261, 1400, 1541, 1694, 1849, 2016, 2185, 2366, 2549, 2744, 2941, 3150, 3361, 3584, 3809, 4046, 4285, 4536, 4789, 5054, 5321, 5600, 5881, 6174, 6469, 6776, 7085, 7406
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric tetradecagonal numbers or concentric tetrakaidecagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 14, ..., and the same line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Main axis, perpendicular to A024966 in the same spiral.
Partial sums of A113801. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195145 n = a195145_list !! n
    a195145_list = scanl (+) 0 a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(14*n^2+5*(-1)^n-5)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 1, 14, 29}, 50] (* Amiram Eldar, Jan 16 2023 *)

Formula

G.f.: -x*(1+12*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (14*n^2 + 5*(-1)^n - 5)/4;
a(n) = a(-n) = -a(n-1) + 7*n^2 - 7*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/84 + tan(sqrt(5/7)*Pi/2)*Pi/(2*sqrt(35)). - Amiram Eldar, Jan 16 2023
E.g.f.: (7*x*(x + 1)*cosh(x) + (7*x^2 + 7*x - 5)*sinh(x))/2. - Stefano Spezia, Nov 30 2024

A195149 Concentric 22-gonal numbers.

Original entry on oeis.org

0, 1, 22, 45, 88, 133, 198, 265, 352, 441, 550, 661, 792, 925, 1078, 1233, 1408, 1585, 1782, 1981, 2200, 2421, 2662, 2905, 3168, 3433, 3718, 4005, 4312, 4621, 4950, 5281, 5632, 5985, 6358, 6733, 7128, 7525, 7942, 8361, 8800, 9241, 9702, 10165, 10648, 11133
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 22,..., and the same line from 1, in the direction 1, 45,..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Main axis, perpendicular to A152740 in the same spiral.

Crossrefs

A195323 and A195318 interleaved.
Cf. A032527, A195049, A195058. Column 22 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+20*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = (22*n^2+9*(-1)^n-9)/4; a(n) = -a(n-1)+11*n^2-11*n+1. - Vincenzo Librandi, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/132 + tan(3*Pi/(2*sqrt(11)))*Pi/(6*sqrt(11)). - Amiram Eldar, Jan 17 2023
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Wesley Ivan Hurt, Jun 19 2025

A195142 Concentric 10-gonal numbers.

Original entry on oeis.org

0, 1, 10, 21, 40, 61, 90, 121, 160, 201, 250, 301, 360, 421, 490, 561, 640, 721, 810, 901, 1000, 1101, 1210, 1321, 1440, 1561, 1690, 1821, 1960, 2101, 2250, 2401, 2560, 2721, 2890, 3061, 3240, 3421, 3610, 3801, 4000, 4201, 4410, 4621, 4840, 5061, 5290
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric decagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 10, ..., and the same line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Main axis, perpendicular to A028895 in the same spiral.

Crossrefs

A033583 and A069133 interleaved.
Cf. A090771 (first differences).
Column 10 of A195040. - Omar E. Pol, Sep 28 2011

Programs

  • Haskell
    a195142 n = a195142_list !! n
    a195142_list = scanl (+) 0 a090771_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(10*n^2+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+10(n-1)},a[n],{n,50}] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,10,21},50] (* Harvey P. Dale, Sep 29 2011 *)

Formula

G.f.: -x*(1+8*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = -a(n-1) + 5*n^2 - 5*n + 1, a(0)=0. - Vincenzo Librandi, Sep 27 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = a(-n) = (10*n^2 + 3*(-1)^n - 3)/4.
a(n) = a(n-2) + 10*(n-1). (End)
a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4); a(0)=0, a(1)=1, a(2)=10, a(3)=21. - Harvey P. Dale, Sep 29 2011
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(sqrt(3/5)*Pi/2)*Pi/(2*sqrt(15)). - Amiram Eldar, Jan 16 2023

A195147 Concentric 18-gonal numbers.

Original entry on oeis.org

0, 1, 18, 37, 72, 109, 162, 217, 288, 361, 450, 541, 648, 757, 882, 1009, 1152, 1297, 1458, 1621, 1800, 1981, 2178, 2377, 2592, 2809, 3042, 3277, 3528, 3781, 4050, 4321, 4608, 4897, 5202, 5509, 5832, 6157, 6498, 6841, 7200, 7561, 7938, 8317, 8712, 9109
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 18, ..., and the same line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Main axis, perpendicular to A027468 in the same spiral.

Crossrefs

A195321 and A195316 interleaved.
Cf. A032527, A195047, A195048. Column 18 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023

A195148 Concentric 20-gonal numbers.

Original entry on oeis.org

0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric icosagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 20, ..., and the same line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Main axis, perpendicular to A124080 in the same spiral.

Crossrefs

A195322 and A195317 interleaved.
Cf. A032527, A195048, A195049. Column 20 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 5*n^2 + 2*(-1)^n-2;
a(n) = -a(n-1) + 10*n^2 - 10*n + 1. (End)
G.f.: x*(1+18*x+x^2)/((1+x)*(1-x)^3). - Bruno Berselli, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/120 + tan(Pi/sqrt(5))*Pi/(8*sqrt(5)). - Amiram Eldar, Jan 17 2023

A195041 Concentric heptagonal numbers.

Original entry on oeis.org

0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

A033582 and A069127 interleaved.
Partial sums of A047336. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195041 n = a195041_list !! n
    a195041_list = scanl (+) 0 a047336_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
    
  • Mathematica
    CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 7*n^2/4 + 3*((-1)^n - 1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+5*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A069099(n+1). (End)
a(n) = n^2 + floor(3*n^2/4). - Bruno Berselli, Aug 08 2013
Sum_{n>=1} 1/a(n) = Pi^2/42 + tan(sqrt(3/7)*Pi/2)*Pi/sqrt(21). - Amiram Eldar, Jan 16 2023
Showing 1-10 of 23 results. Next