cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A033428 a(n) = 3*n^2.

Original entry on oeis.org

0, 3, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348
Offset: 0

Views

Author

Keywords

Comments

The number of edges of a complete tripartite graph of order 3n, K_n,n,n. - Roberto E. Martinez II, Oct 18 2001
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0; then a(n) is the sequence found by reading the line from 0 in the direction 0,3,.... The spiral begins:
.
33--32--31--30
/ \
34 16--15--14 29
/ / \ \
35 17 5---4 13 28
/ / / \ \ \
36 18 6 0---3--12--27--48-->
/ / / / / / / /
37 19 7 1---2 11 26 47
\ \ \ / / /
38 20 8---9--10 25 46
\ \ / /
39 21--22--23--24 45
\ /
40--41--42--43--44
(End)
Number of edges of the complete bipartite graph of order 4n, K_n,3n. - Roberto E. Martinez II, Jan 07 2002
Also the number of partitions of 6n + 3 into at most 3 parts. - R. K. Guy, Oct 23 2003
Also the number of partitions of 6n into exactly 3 parts. - Colin Barker, Mar 23 2015
Numbers n such that the imaginary quadratic field Q[sqrt(-n)] has six units. - Marc LeBrun, Apr 12 2006
The denominators of Hoehn's sequence (recalled by G. L. Honaker, Jr.) and the numerators of that sequence reversed. The sequence is 1/3, (1+3)/(5+7), (1+3+5)/(7+9+11), (1+3+5+7)/(9+11+13+15), ...; reduced to 1/3, 4/12, 9/27, 16/48, ... . For the reversal, the reduction is 3/1, 12/4, 27/9, 48/16, ... . - Enoch Haga, Oct 05 2007
Right edge of tables in A200737 and A200741: A200737(n, A000292(n)) = A200741(n, A100440(n)) = a(n). - Reinhard Zumkeller, Nov 21 2011
The Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1<=i, j<=n, i/=j} (= the complete bipartite graph K(n,n) with horizontal edges removed). Example: a(3)=27 because G(3) is the cycle C(6) and 6*1 + 6*2 + 3*3 = 27. The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
From Michel Lagneau, May 04 2015: (Start)
Integer area A of equilateral triangles whose side lengths are in the commutative ring Z[3^(1/4)] = {a + b*3^(1/4) + c*3^(1/2) + d*3^(3/4), a,b,c and d in Z}.
The area of an equilateral triangle of side length k is given by A = k^2*sqrt(3)/4. In the ring Z[3^(1/4)], if k = q*3^(1/4), then A = 3*q^2/4 is an integer if q is even. Example: 27 is in the sequence because the area of the triangle (6*3^(1/4), 6*3^(1/4), 6*3^(1/4)) is 27. (End)
a(n) is 2*sqrt(3) times the area of a 30-60-90 triangle with short side n. Also, 3 times the area of an n X n square. - Wesley Ivan Hurt, Apr 06 2016
Consider the hexagonal tiling of the plane. Extract any four hexagons adjacent by edge. This can be done in three ways. Fold the four hexagons so that all opposite faces occupy parallel planes. For all parallel projections of the resulting object, at least two correspond to area a(n) for side length of n of the original hexagons. - Torlach Rush, Aug 17 2022
The sequence terms are the exponents in the expansion of Product_{n >= 1} (1 - q^(3*n))/(1 + q^(3*n)) = ( Sum_{n in Z} q^(n*(3*n+1)/2) ) / ( Product_{n >= 1} 1 + q^n ) = 1 - 2*q^3 + 2*q^12 - 2*q^27 + 2*q^48 - 2*q^75 + - .... - Peter Bala, Dec 30 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
.                                              o
.                                             o o
.                                            o   o
.                          o                o  o  o
.                         o o              o  o o  o
.                        o   o            o  o   o  o
.           o           o  o  o          o  o  o  o  o
.          o o         o  o o  o        o  o  o o  o  o
.         o   o       o  o   o  o      o  o  o   o  o  o
.  o     o  o  o     o  o  o  o  o    o  o  o  o  o  o  o
. o o   o  o o  o   o  o  o o  o  o  o  o  o  o o  o  o  o
. n=1      n=2            n=3                 n=4
(End)
		

Crossrefs

Programs

  • Haskell
    a033428 = (* 3) . (^ 2)
    a033428_list = 0 : 3 : 12 : zipWith (+) a033428_list
       (map (* 3) $ tail $ zipWith (-) (tail a033428_list) a033428_list)
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Magma
    [3*n^2: n in [0..50]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    seq(3*n^2, n=0..46); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    3 Range[0, 50]^2
    LinearRecurrence[{3, -3, 1}, {0, 3, 12}, 50] (* Harvey P. Dale, Feb 16 2013 *)
  • Maxima
    makelist(3*n^2,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=3*n^2
    
  • Python
    def a(n): return 3 * (n**2) # Torlach Rush, Aug 25 2022

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: 3*x*(1+x)/(1-x)^3. - R. J. Mathar, Sep 09 2008
Main diagonal of triangle in A132111: a(n) = A132111(n,n). - Reinhard Zumkeller, Aug 10 2007
A214295(a(n)) = -1. - Reinhard Zumkeller, Jul 12 2012
a(n) = A215631(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A174709(6n+2). - Philippe Deléham, Mar 26 2013
a(n) = a(n-1) + 6*n - 3, with a(0)=0. - Jean-Bernard François, Oct 04 2013
E.g.f.: 3*x*(1 + x)*exp(x). - Ilya Gutkovskiy, Apr 13 2016
a(n) = t(3*n) - 3*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): A000217(3*n) - 3*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = A000326(n) + A005449(n). - Bruce J. Nicholson, Jan 10 2020
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/18 (A086463).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/36. (End)
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(3)*sinh(Pi/sqrt(3))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(3)*sin(Pi/sqrt(3))/Pi. (End)
a(n) = A003215(n) - A016777(n). - Leo Tavares, Apr 29 2023

Extensions

Better description from N. J. A. Sloane, May 15 1998

A033581 a(n) = 6*n^2.

Original entry on oeis.org

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 4-partite graph of order 4n, K_n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n. - Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n). - Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids. - Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral. - Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence. - Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices. - Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n). - Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k - 4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k - 4), ..., in the square spiral whose vertices are the generalized k-gonal numbers. In this case k = 5. - Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a match-made hexagon of size n. - John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars. - John King, Apr 04 2019

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
.                                 o o o o o o
.                                o           o
.              o o o o          o   o o o o   o
.             o       o        o   o       o   o
.   o o      o   o o   o      o   o   o o   o   o
.  o   o    o   o   o   o    o   o   o   o   o   o
.   o o      o   o o   o      o   o   o o   o   o
.             o       o        o   o       o   o
.              o o o o          o   o o o o   o
.                                o           o
.                                 o o o o o o
.
.    6            24                   54
.
(End)
		

Crossrefs

Bisection of A032528. Central column of triangle A001283.
Cf. A017593 (first differences).

Programs

Formula

a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001

A005901 Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0, a(n) = 10n^2 + 2. Also coordination sequence for f.c.c. or A_3 or D_3 lattice.

Original entry on oeis.org

1, 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002, 1212, 1442, 1692, 1962, 2252, 2562, 2892, 3242, 3612, 4002, 4412, 4842, 5292, 5762, 6252, 6762, 7292, 7842, 8412, 9002, 9612, 10242, 10892, 11562, 12252, 12962, 13692, 14442, 15212, 16002
Offset: 0

Views

Author

N. J. A. Sloane, R. Vaughan

Keywords

Comments

Sequence found by reading the segment (1, 12) together with the line from 12, in the direction 12, 42, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF4
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #1.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • S. Rosen, Wizard of the Dome: R. Buckminster Fuller; Designer for the Future. Little, Brown, Boston, 1969, p. 109.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A005902.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    [n eq 0 select 1 else 2*(5*n^2+1): n in [0..55]]; // G. C. Greubel, May 25 2023
    
  • Mathematica
    Join[{1},10*Range[40]^2+2] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{12,42,92},40]] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    a(n)=if(n<0,0,10*n^2+1+(n>0))
    
  • SageMath
    [2*(5*n^2 + 1)-int(n==0) for n in range(56)] # G. C. Greubel, May 25 2023

Formula

G.f.: (1+x)*(1+8*x+x^2)/(1-x)^3. - Simon Plouffe in his 1992 dissertation
G.f. for coordination sequence for A_n lattice is (1-z)^(-n) * Sum_{i=0..n} binomial(n, i)^2*z^i. [Bacher et al.]
a(n+1) = A027599(n+2) + A092277(n+1) - Creighton Dement, Feb 11 2005
a(n) = 2 + A033583(n), n >= 1. - Omar E. Pol, Jul 18 2012
a(n) = 12 + 24*(n-1) + 8*A000217(n-2) + 6*A000290(n-1). The properties of the cuboctahedron, namely, its number of vertices (12), edges (24), and faces as well as face-type (8 triangles and 6 squares), are involved in this formula. - Peter M. Chema, Mar 26 2017
a(n) = A062786(n) + A062786(n+1). - R. J. Mathar, Feb 28 2018
E.g.f.: -1 + 2*(1 + 5*x + 5*x^2)*exp(x). - G. C. Greubel, May 25 2023
Sum{n>=0} 1/a(n) = 3/4 + Pi*sqrt(5)*coth(Pi/sqrt 5)/20 = 1.14624... - R. J. Mathar, Apr 27 2024

A003952 Expansion of g.f.: (1+x)/(1-9*x).

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690, 1500946352969991210, 13508517176729920890
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Coordination sequence for infinite tree with valency 10.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
Except 1, all terms are in A033583. - Vincenzo Librandi, May 26 2014
For n>=1, a(n) equals the number of words of length n on alphabet {0,1,...,9} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
a(n) is the number of sequences over the alphabet {0,1,...,9} of length n such that no two consecutive terms have distance 5. - David Nacin, May 31 2017

Crossrefs

Programs

Formula

a(n) = (10*9^n - 0^n)/9. Binomial transform is A000042. - Paul Barry, Jan 29 2004
G.f.: (1+x)/(1-9*x). - Philippe Deléham, Jan 31 2004
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 8. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (10*exp(9*x) - 1)/9. - G. C. Greubel, Sep 24 2019

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A000914 Stirling numbers of the first kind: s(n+2, n).

Original entry on oeis.org

0, 2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566, 16815, 20615, 25025, 30107, 35926, 42550, 50050, 58500, 67977, 78561, 90335, 103385, 117800, 133672, 151096, 170170, 190995, 213675, 238317, 265031
Offset: 0

Views

Author

Keywords

Comments

Sum of product of unordered pairs of numbers from {1..n+1}.
Number of edges of a complete k-partite graph of order k*(k+1)/2 (A000217), K_1,2,3,...,k. - Roberto E. Martinez II, Oct 18 2001
This sequence holds the x^(n-2) coefficient of the characteristic polynomial of the N X N matrix A formed by MAX(i,j), where i is the row index and j is the column index of element A[i][j], 1 <= i,j <= N. Here N >= 2. - Paul Max Payton, Sep 06 2005
The sequence contains the partial sums of A006002, which represent the areas beneath lines created by the triangular numbers plotted (t(1),t(2)) connected to (t(2),t(3)) then (t(3),t(4))...(t(n-1),t(n)) and the x-axis. - J. M. Bergot, May 05 2012
Number of functions f from [n+2] to [n+2] with f(x)=x for exactly n elements x of [n+2] and f(x)>x for exactly two elements x of [n+2]. To prove this, let the two elements of [n+2] with a larger image be labeled i and j. Note both i and j must be less than n+2. Then there are (n+2-i) choices for f(i) and (n+2-j) choices for f(j). Summing the product of the number of choices over all sets {i,j} gives us "Sum of product of unordered pairs of numbers from {1..n+1}" in the first line of the Comments Section. See the example in the Example Section below. - Dennis P. Walsh, Sep 06 2017
Zhu Shijie gives in his Magnus Opus "Jade Mirror of the Four Unknowns" the problem: "Apples are piled in the form of a triangular pyramid. The top apple is worth 2 and the price of the whole is 1320. Each apple in one layer costs 1 less than an apple in the next layer below." We find the solution 9 to this problem in this sequence 1320 = a(9). Zhu Shijie gave the solution polynomial: "Let the element tian be the number of apples in a side of the base. From the statement we have 31680 for the negative shi, 10 for the positive fang, 21 for the positive first lian, 14 for the positive last lian, and 3 for the positive yu." This translates into the polynomial equation: 3*x^4 + 14*x^3 + 21*x^2 + 10*x - 31680 = 0. - Thomas Scheuerle, Feb 10 2025

Examples

			Examples include E(K_1,2,3) = s(2+2,2) = 11 and E(K_1,2,3,4,5) = s(4+2,4) = 85, where E is the function that counts edges of graphs.
For n=2 the a(2)=11 functions f:[4]->[4] with exactly two f(x)=x and two f(x)>x are given by the 11 image vectors of form <f(1),f(2),f(3),f(4)> that follow: <1,3,4,4>, <1,4,4,4>, <2,2,4,4>, <3,2,4,4>, <4,2,4,4>, <2,3,3,4>, <2,4,3,4>, <3,3,3,4>, <3,4,3,4>, <4,3,3,4>, and <4,4,3,4>. - _Dennis P. Walsh_, Sep 06 2017
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • George E. Andrews, Number Theory, Dover Publications, New York, 1971, p. 4.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • H. S. Hall and S. R. Knight, Higher Algebra, Fourth Edition, Macmillan, 1891, p. 518.
  • Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 1, 1303.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A241765.
Cf. A001296.
Cf. A006325(n+1) (Zhu Shijie's problem number 2 uses a pyramid with square base).

Programs

  • Haskell
    a000914 n = a000914_list !! n
    a000914_list = scanl1 (+) a006002_list
    -- Reinhard Zumkeller, Mar 25 2014
    
  • Magma
    [StirlingFirst(n+2, n): n in [0..40]]; // Vincenzo Librandi, May 28 2019
  • Maple
    A000914 := n -> 1/24*(n+1)*n*(n+2)*(3*n+5);
    A000914 := proc(n)
        combinat[stirling1](n+2,n) ;
    end proc: # R. J. Mathar, May 19 2016
  • Mathematica
    Table[StirlingS1[n+2,n],{n,0,40}] (* Harvey P. Dale, Aug 24 2011 *)
    a[ n_] := n (n + 1) (n + 2) (3 n + 5) / 24; (* Michael Somos, Sep 04 2017 *)
  • PARI
    a(n)=sum(i=1,n+1,sum(j=1,n+1,i*j*(i
    				
  • PARI
    a(n)=sum(i=1,n+1,sum(j=1,i-1,i*j)) \\ Charles R Greathouse IV, Apr 07 2015
    
  • PARI
    a(n) = binomial(n+2, 3)*(3*n+5)/4 \\ Charles R Greathouse IV, Apr 07 2015
    
  • Sage
    [stirling_number1(n+2, n) for n in range(41)] # Zerinvary Lajos, Mar 14 2009
    

Formula

a(n) = binomial(n+2, 3)*(3*n+5)/4 = (n+1)*n*(n+2)*(3*n+5)/24.
E.g.f.: exp(x)*x*(48 + 84*x + 32*x^2 + 3*x^3)/24.
G.f.: (2*x+x^2)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
a(n) = Sum_{i=1..n} i*(i+1)^2/2. - Jon Perry, Jul 31 2003
a(n) = A052149(n+1)/2. - J. M. Bergot, Jun 02 2012
-(3*n+2)*(n-1)*a(n) + (n+2)*(3*n+5)*a(n-1) = 0. - R. J. Mathar, Apr 30 2015
a(n) = a(n-1) + (n+1)*binomial(n+1,2) for n >= 1. - Dennis P. Walsh, Sep 21 2015
a(n) = A001296(-2-n) for all n in Z. - Michael Somos, Sep 04 2017
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 162*log(3)/5 - 18*sqrt(3)*Pi/5 - 384/25.
Sum_{n>=1} (-1)^(n+1)/a(n) = 36*sqrt(3)*Pi/5 - 96*log(2)/5 - 636/25. (End)
a(n) = 3*A000332(n+3) - A000292(n). - Yasser Arath Chavez Reyes, Apr 03 2024

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Comments from Michael Somos, Jan 29 2000
Erroneous duplicate of the polynomial formula removed by R. J. Mathar, Sep 15 2009

A028895 5 times triangular numbers: a(n) = 5*n*(n+1)/2.

Original entry on oeis.org

0, 5, 15, 30, 50, 75, 105, 140, 180, 225, 275, 330, 390, 455, 525, 600, 680, 765, 855, 950, 1050, 1155, 1265, 1380, 1500, 1625, 1755, 1890, 2030, 2175, 2325, 2480, 2640, 2805, 2975, 3150, 3330, 3515, 3705, 3900, 4100, 4305, 4515, 4730, 4950, 5175, 5405, 5640
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ... and the same line from 0, in the direction 0, 15, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Axis perpendicular to A195142 in the same spiral. - Omar E. Pol, Sep 18 2011
Bisection of A195014. Sequence found by reading the line from 0, in the direction 0, 5, ..., and the same line from 0, in the direction 0, 15, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is the main diagonal of the spiral. - Omar E. Pol, Sep 25 2011
a(n) = the Wiener index of the graph obtained by applying Mycielski's construction to the complete graph K(n) (n>=2). - Emeric Deutsch, Aug 29 2013
Sum of the numbers from 2*n to 3*n for n=0,1,2,... - Wesley Ivan Hurt, Nov 27 2015
Numbers k such that the concatenation k625 is a square, where also 625 is a square. - Bruno Berselli, Nov 07 2018
From Paul Curtz, Nov 29 2019: (Start)
Main column of the pentagonal spiral for n (A001477):
50
49 30 31
48 29 15 16 32
47 28 14 5 6 17 33
46 27 13 4 0 1 7 18 34
45 26 12 3 2 8 19 35
44 25 11 10 9 20 36
43 24 23 22 21 37
42 41 40 39 38
(End)

References

  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A000566, A005475, A005476, A033583, A085787, A147875, A192136, A326725 (all in the spiral).

Programs

Formula

G.f.: 5*x/(1-x)^3.
a(n) = 5*n*(n+1)/2 = 5*A000217(n).
a(n+1) = 5*n+a(n). - Vincenzo Librandi, Aug 05 2010
a(n) = A005891(n) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A130520(5n+4). - Philippe Deléham, Mar 26 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Wesley Ivan Hurt, Nov 27 2015
a(n) = Sum_{i=0..n} A001068(4i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: 5*x*(2 + x)*exp(x)/2. - Ilya Gutkovskiy, May 06 2016
a(n) = A055998(3*n) - A055998(2*n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/5)*(2*log(2) - 1). (End)
Product_{n>=1} (1 - 1/a(n)) = -(5/(2*Pi))*cos(sqrt(13/5)*Pi/2). - Amiram Eldar, Feb 21 2023

A055096 Triangle read by rows, sums of 2 distinct nonzero squares: T(n,k) = k^2+n^2, (n>=2, 1 <= k <= n-1).

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 41, 37, 40, 45, 52, 61, 50, 53, 58, 65, 74, 85, 65, 68, 73, 80, 89, 100, 113, 82, 85, 90, 97, 106, 117, 130, 145, 101, 104, 109, 116, 125, 136, 149, 164, 181, 122, 125, 130, 137, 146, 157, 170, 185, 202, 221, 145, 148, 153, 160
Offset: 2

Views

Author

Antti Karttunen, Apr 04 2000

Keywords

Comments

Discovered by Bernard Frénicle de Bessy (1605?-1675). - Paul Curtz, Aug 18 2008
Terms that are not hypotenuses in primitive Pythagorean triangles, are replaced by 0 in A222946. - Reinhard Zumkeller, Mar 23 2013
This triangle T(n,k) gives the circumdiameters for the Pythagorean triangles with a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (see the Floor van Lamoen entries or comments A063929, A063930, A002283, A003991). See also the formula section. Note that not all Pythagorean triangles are covered, e.g., (9,12,15) does not appear. - Wolfdieter Lang, Dec 03 2014

Examples

			The triangle T(n, k) begins:
n\k   1   2   3   4   5   6   7   8   9  10  11 ...
2:    5
3:   10  13
4:   17  20  25
5:   26  29  34  41
6:   37  40  45  52  61
7:   50  53  58  65  74  85
8:   65  68  73  80  89 100 113
9:   82  85  90  97 106 117 130 145
10: 101 104 109 116 125 136 149 164 181
11: 122 125 130 137 146 157 170 185 202 221
12: 145 148 153 160 169 180 193 208 225 244 265
...
13: 170 173 178 185 194 205 218 233 250 269 290 313,
14: 197 200 205 212 221 232 245 260 277 296 317 340 365,
15: 226 229 234 241 250 261 274 289 306 325 346 369 394 421,
16: 257 260 265 272 281 292 305 320 337 356 377 400 425 452 481,
...
Formatted and extended by _Wolfdieter Lang_, Dec 02 2014 (reformatted Jun 11 2015)
The successive terms are (1^2+2^2), (1^2+3^2), (2^2+3^2), (1^2+4^2), (2^2+4^2), (3^2+4^2), ...
		

Crossrefs

Sorting gives A024507. Count of divisors: A055097, Möbius: A055132. For trinv, follow A055088.
Cf. A001844 (right edge), A002522 (left edge), A033429 (central column).

Programs

  • Haskell
    a055096 n k = a055096_tabl !! (n-1) !! (k-1)
    a055096_row n = a055096_tabl !! (n-1)
    a055096_tabl = zipWith (zipWith (+)) a133819_tabl a140978_tabl
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Magma
    [n^2+k^2: k in [1..n-1], n in [2..15]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    sum2distinct_squares_array := (n) -> (((n-((trinv(n-1)*(trinv(n-1)-1))/2))^2)+((trinv(n-1)+1)^2));
  • Mathematica
    T[n_, k_]:= (n+1)^2 + k^2; Table[T[n, k], {n,15}, {k,n}]//Flatten (* Jean-François Alcover, Mar 16 2015, after Reinhard Zumkeller *)
  • SageMath
    def A055096(n,k): return n^2 + k^2
    flatten([[A055096(n,k) for k in range(1,n)] for n in range(2,16)]) # G. C. Greubel, Apr 19 2023

Formula

a(n) = sum2distinct_squares_array(n).
T(n, 1) = A002522(n).
T(n, n-1) = A001844(n-1).
T(2*n-2, n-1) = A033429(n-1).
T(n,k) = A133819(n,k) + A140978(n,k) = (n+1)^2 + k^2, 1 <= k <= n. - Reinhard Zumkeller, Mar 23 2013
T(n, k) = a*b*c/(2*sqrt(s*(s-1)*(s-b)*(s-c))) with s =(a + b + c)/2 and the substitution a = (n+1)^2 - k^2, b = 2*(n+1)*k and c = (n+1)^2 + k^2 (the circumdiameter for the considered Pythagorean triangles). - Wolfdieter Lang, Dec 03 2014
From Bob Selcoe, Mar 21 2015: (Start)
T(n,k) = 1 + (n-k+1)^2 + Sum_{j=0..k-2} (4*j + 2*(n-k+3)).
T(n,k) = 1 + (n+k-1)^2 - Sum_{j=0..k-2} (2*(n+k-3) - 4*j).
Therefore: 4*(n-k+1) + Sum_{j=0..k-2} (2*(n-k+3) + 4*j) = 4*n(k-1) - Sum_{j=0..k-2} (2*(n+k-3) - 4*j). (End)
From G. C. Greubel, Apr 19 2023: (Start)
T(2*n-3, n-1) = A033429(n-1).
T(2*n-4, n-2) = A079273(n-1).
T(2*n-2, n) = A190816(n).
T(3*n-4, n-1) = 10*A000290(n-1) = A033583(n-1).
Sum_{k=1..n-1} T(n, k) = A331987(n-1).
Sum_{k=1..floor(n/2)} T(n-k, k) = A226141(n-1). (End)

Extensions

Edited: in T(n, k) formula by Reinhard Zumkeller k < n replaced by k <= n. - Wolfdieter Lang, Dec 02 2014
Made definition more precise, changed offset to 2. - N. J. A. Sloane, Mar 30 2015

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A069133 Centered 20-gonal (or icosagonal) numbers.

Original entry on oeis.org

1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, 9921, 10561, 11221, 11901, 12601, 13321, 14061, 14821, 15601, 16401, 17221, 18061, 18921, 19801
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 20, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Equals Narayana transform (A001263) of [1, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Semi-axis opposite to A033583 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5)=201 because 201 = 10*5^2 - 10*5 + 1 = 250 - 50 + 1.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = 10n^2 - 10n + 1.
a(n) = 20*n + a(n-1) - 20 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 18*x + x^2)/(1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=21, a(2)=61. - Harvey P. Dale, Apr 29 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3/5)*Pi/2)/(2*sqrt(15)).
Sum_{n>=1} a(n)/n! = 11*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/e - 1. (End)
a(n) = 12*A000217(n-1) + A016754(n-1). - John Elias, Oct 23 2020
E.g.f.: exp(x)*(1 + 10*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A244630 a(n) = 17*n^2.

Original entry on oeis.org

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).

Programs

Formula

G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)
Showing 1-10 of 33 results. Next