A376998 Minimum number of matchsticks required to make equilateral triangles of side lengths 1, 2, ..., n simultaneously.
3, 7, 12, 17, 23
Offset: 1
Links
- John King, Triangles 1 to 15
Crossrefs
Cf. A294249.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
John King has authored 13 sequences. Here are the ten most recent ones:
Triangle begins: n\k| 1 2 3 4 5 6 7 8 9 10 11 12 ----+----------------------------------------------------------- 1 | 1; 2 | 4, 0; 3 | 9, 9, 0; 4 | 12, 15, 16, 16; 5 | 17, 23, 25, 25, 25; 6 | 20, 30, 35, 36, 36, 36; 7 | 25, 37, 45, 49, 49, 49, 49; 8 | 28, 44, 55, 62, 64, 64, 64, 64; 9 | 33, 52, 66, 76, 81, 81, 81, 81, 81; 10 | 36, 60, 77, 92, 100, 100, 100, 100, 100, 100; 11 | 41, 68, 88, 104, 121, 121, 121, 121, 121, 121, 121; 12 | 44, 76, 101, 120, 134, 142, 144, 144, 144, 144, 144, 144; 13 | 49, 84, 112, 136, 153, 165, 169, 169, 169, 169, 169, ...; 14 | 52, 92, 125, 152, 172, 186, 194, 196, 196, 196, 196, ...; 15 | 57, 100, 136, 168, 193, 209, 221, 224, 225, 225, 225, ...; 16 | 60, 108, 149, 184, 212, 231, 242, 251, 256, 256, 256, ...; 17 | 65, 116, 160, 200, 233, 255, 269, 281, 289, 289, 289, ...; 18 | 68, 124, 173, 216, 252, 277, 294, 310, 322, 324, 324, ...; ...
Example for 12 X 12: There are 2 cells marked 'o' or uncovered thus a(12) = 12 * 12 - 2 = 142. x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x Q x x x x x x x x x x x x x Q x x x x x x x x Q x x x x x x x x x x x x x Q x x x x x o x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x o x x x From _Christian Sievers_, Sep 08 2024: (Start) Example for 14 X 14 with 186 attacked squares (unattacked ones marked with "+"): . . Q . . . . . . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . . . . . + . + . . . . . . . . . . . . . . . Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q . . + . . . . . . . . . . . . . . . . . . . . . . . . . + . . . . . . Q . . . . . . . . + . . + . . . . . . + . . . . . . . + . . . . + . . + Q . . . . . . . . . . . . . (End)
5 X 5; 6 X 6; 7 X 7; 8 X 8; Center-square +4Queens separated as if 1,2 knights. at 11 X 11 and beyond this pattern seems to be 'best'. x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x Q x x x x x Q x x x x x Q x x x x x x x x x x Q x x x x x x x x x x x 9 X 9; 10 X 10; 11 X 11; Center-square +4Queens separated as 2,4 knights. x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x
4 X 4: x Q x x x x x Q Q x x x x x Q x 5 X 5 there are several arrangements: x Q x x x x x x x x x x x x Q Q x x x x x x x Q x 6 X 6 and 7 X 7 (add a row and column) pattern as 4 queens knight-1,3 and 1,4 separation (not symmetric): . . . . . . . x x x x Q x . Q x x x x x . x x x x x x . x x x x x Q . x Q x x x x . 8 X 8: queens all knight-1,4 apart; 8 X 8 has 2 o/s; 9 X 9 has 5 o/s; 10 X 10 has 8 o/s; o x x x x x x x x o x o x x x x x x o x x x x Q x x x x x x x x x x x x x Q x x x x x x x x x x x x x x x x x x x x x x x x Q x x x x x x x x x x x x x Q x x x x o x x x x x x o x o x x x x x x x x o beyond 10 X 10, the 4 queens separated as 1,2 knights begins to be the best layout; at 15 X 15, the pattern is clear. o x x o o x x x x o o x x o x x o x x o x x x x o x x o x x x x o x x x x x x x x o x x o o x x o x x x x x x o x x o o o o x x o x x x x o x x o o o x x x x x x Q x x x x x x x x x x x x x x x x Q x x x x x x x x x x x Q x x x x x x x x x x x x x x x x Q x x x x x x x o o x x o x x x x o x x o o o o x x o x x x x x x o x x o o x x o x x x x x x x x o x x o x o x x o x x x x o x x o x x o x x o o x x x x o o x x o x x x o o o x x x x o o o x x o
4 X 4 complete coverage with 3 queens x x x x x Q x x x x x Q Q x x x 5 X 5 complete coverage with 3 queens Q x x x x x x x x x x x x Q x x x x x x x x Q x x 6 X 6 incomplete 1 o/s x x x x o x Q x x x x x x x x x x Q x x x x x x x x Q x x x x x x x x x 6 X 6 coverage complete but NOT independent Q x x x x x x x x x x x x x x x q x x x x x x x x x q x x x x x x x x x 7 X 7 best leaves 4 o/s (same layout as 6 X 6 with extra row and column) There are alternative layouts - how many is not identified. x x x x o x x Q x x x x x x x x x x x Q x x x x x x x x x x Q x x x x x x x x x x o x x x o x x o
Comments