cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A195142 Concentric 10-gonal numbers.

Original entry on oeis.org

0, 1, 10, 21, 40, 61, 90, 121, 160, 201, 250, 301, 360, 421, 490, 561, 640, 721, 810, 901, 1000, 1101, 1210, 1321, 1440, 1561, 1690, 1821, 1960, 2101, 2250, 2401, 2560, 2721, 2890, 3061, 3240, 3421, 3610, 3801, 4000, 4201, 4410, 4621, 4840, 5061, 5290
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Also concentric decagonal numbers. Also sequence found by reading the line from 0, in the direction 0, 10, ..., and the same line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Main axis, perpendicular to A028895 in the same spiral.

Crossrefs

A033583 and A069133 interleaved.
Cf. A090771 (first differences).
Column 10 of A195040. - Omar E. Pol, Sep 28 2011

Programs

  • Haskell
    a195142 n = a195142_list !! n
    a195142_list = scanl (+) 0 a090771_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(10*n^2+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+10(n-1)},a[n],{n,50}] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,10,21},50] (* Harvey P. Dale, Sep 29 2011 *)

Formula

G.f.: -x*(1+8*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = -a(n-1) + 5*n^2 - 5*n + 1, a(0)=0. - Vincenzo Librandi, Sep 27 2011
From Bruno Berselli, Sep 27 2011: (Start)
a(n) = a(-n) = (10*n^2 + 3*(-1)^n - 3)/4.
a(n) = a(n-2) + 10*(n-1). (End)
a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4); a(0)=0, a(1)=1, a(2)=10, a(3)=21. - Harvey P. Dale, Sep 29 2011
Sum_{n>=1} 1/a(n) = Pi^2/60 + tan(sqrt(3/5)*Pi/2)*Pi/(2*sqrt(15)). - Amiram Eldar, Jan 16 2023

A195317 Centered 40-gonal numbers.

Original entry on oeis.org

1, 41, 121, 241, 401, 601, 841, 1121, 1441, 1801, 2201, 2641, 3121, 3641, 4201, 4801, 5441, 6121, 6841, 7601, 8401, 9241, 10121, 11041, 12001, 13001, 14041, 15121, 16241, 17401, 18601, 19841, 21121, 22441, 23801, 25201, 26641, 28121, 29641, 31201, 32801, 34441, 36121
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Also centered tetracontagonal numbers or centered tetrakaicontagonal numbers. Also sequence found by reading the line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semi-axis opposite to A195322 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 20*n^2 - 20*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(5))/(8*sqrt(5)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+38*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(20*x^2 + 1) - 1.
a(n) = 2*A069133(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195314 Centered 28-gonal numbers.

Original entry on oeis.org

1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Semi-axis opposite to A144555 in the same spiral.

Crossrefs

Programs

  • Magma
    [(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
  • PARI
    a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 14*n^2 - 14*n + 1.
G.f.: -x*(1 + 26*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 01 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5/7)*Pi/2)/(2*sqrt(35)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(14*x^2 + 1) - 1.
a(n) = 2*A069127(n) - 1. (End)

A195315 Centered 32-gonal numbers.

Original entry on oeis.org

1, 33, 97, 193, 321, 481, 673, 897, 1153, 1441, 1761, 2113, 2497, 2913, 3361, 3841, 4353, 4897, 5473, 6081, 6721, 7393, 8097, 8833, 9601, 10401, 11233, 12097, 12993, 13921, 14881, 15873, 16897, 17953, 19041, 20161, 21313, 22497, 23713, 24961, 26241, 27553, 28897, 30273
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Semi-axis opposite to A016802 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 16*n + 1.
G.f.: -x*(1 + 30*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3)*Pi/4)/(8*sqrt(3)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(16*x^2 + 1) - 1.
a(n) = 2*A069129(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195316 Centered 36-gonal numbers.

Original entry on oeis.org

1, 37, 109, 217, 361, 541, 757, 1009, 1297, 1621, 1981, 2377, 2809, 3277, 3781, 4321, 4897, 5509, 6157, 6841, 7561, 8317, 9109, 9937, 10801, 11701, 12637, 13609, 14617, 15661, 16741, 17857, 19009, 20197, 21421, 22681, 23977, 25309, 26677, 28081, 29521, 30997, 32509
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Semi-axis opposite to A195321 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 18*n + 1.
G.f.: -x*(1 + 34*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(7)*Pi/6)/(6*sqrt(7)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(18*x^2 + 1) - 1.
a(n) = 2*A069131(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195318 Centered 44-gonal numbers.

Original entry on oeis.org

1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195323 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 22*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(3*Pi/(2*sqrt(11)))/(6*sqrt(11)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+42*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(22*x^2 + 1) - 1.
a(n) = 2*A069173(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A010010 a(0) = 1, a(n) = 20*n^2 + 2 for n>0.

Original entry on oeis.org

1, 22, 82, 182, 322, 502, 722, 982, 1282, 1622, 2002, 2422, 2882, 3382, 3922, 4502, 5122, 5782, 6482, 7222, 8002, 8822, 9682, 10582, 11522, 12502, 13522, 14582, 15682, 16822, 18002, 19222, 20482, 21782, 23122, 24502, 25922, 27382, 28882, 30422, 32002, 33622
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [20*n^2 + 2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 20 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {22, 82, 182}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

a(n) = A033571(n)+A158186(n) = A158187(n)*2 for n>0. - Reinhard Zumkeller, Mar 13 2009
G.f.: (1+x)*(1+18*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*20+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(10)/40*Pi*coth(Pi/sqrt(10)) = 1.0772981051444036327... - R. J. Mathar, May 07 2024
a(n) = A069133(n)+A069133(n+1). - R. J. Mathar, May 07 2024

A361682 Array read by descending antidiagonals. A(n, k) is the number of multiset combinations of {0, 1} whose type is defined in the comments. Also A(n, k) = hypergeom([-k, -2], [1], n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 13, 7, 1, 1, 15, 25, 22, 9, 1, 1, 21, 41, 46, 33, 11, 1, 1, 28, 61, 79, 73, 46, 13, 1, 1, 36, 85, 121, 129, 106, 61, 15, 1, 1, 45, 113, 172, 201, 191, 145, 78, 17, 1, 1, 55, 145, 232, 289, 301, 265, 190, 97, 19, 1
Offset: 0

Views

Author

Peter Luschny, Mar 21 2023

Keywords

Comments

A combination of a multiset M is an unordered selection of k objects of M, where every object can appear at most as many times as it appears in M.
A(n, k) = Cardinality(Union_{j=0..k} Combination(MultiSet(1^[j*n], 0^[(k-j)*n]))), where MultiSet(r^[s], u^[v]) denotes a set that contains the element r with multiplicity s and the element u with multiplicity v; thus the multisets under consideration have n*k elements. Since the base set is {1, 0} the elements can be represented as binary strings. Applying the combination operator to the multisets results in a set of binary strings where '0' resp. '1' can appear at most j*n resp. (k-j)*n times. 'At most' means that they do not have to appear; in other words, the resulting set always includes the empty string ''.
In contrast to the procedure in A361045 we consider here the cardinality of the set union and not the sum of the individual cardinalities. If you want to exclude the empty string, you will find the sequences listed in A361521. The same construction with multiset permutations instead of multiset combinations results in A361043.
A different view can be taken if one considers the hypergeometric representation, hypergeom([-k, -m], [1], n). This is a family of arrays that includes the 'rascal' triangle: the all 1's array A000012 (m = 0), the rascal array A077028 (m = 1), this array (m = 2), and A361731 (m = 3).

Examples

			Array A(n, k) starts:
   [0] 1,  1,   1,    1,   1,   1,   1,    1, ...  A000012
   [1] 1,  3,   6,   10,  15,  21,  28,   36, ...  A000217
   [2] 1,  5,  13,   25,  41,  61,  85,  113, ...  A001844
   [3] 1,  7,  22,   46,  79, 121, 172,  232, ...  A038764
   [4] 1,  9,  33,   73, 129, 201, 289,  393, ...  A081585
   [5] 1, 11,  46,  106, 191, 301, 436,  596, ...  A081587
   [6] 1, 13,  61,  145, 265, 421, 613,  841, ...  A081589
   [7] 1, 15,  78,  190, 351, 561, 820, 1128, ...  A081591
   000012  | A028872 | A239325 |
       A005408    A100536   A069133
.
Triangle T(n, k) starts:
   [0] 1;
   [1] 1,  1;
   [2] 1,  3,   1;
   [3] 1,  6,   5,   1;
   [4] 1, 10,  13,   7,   1;
   [5] 1, 15,  25,  22,   9,   1;
   [6] 1, 21,  41,  46,  33,  11,   1;
   [7] 1, 28,  61,  79,  73,  46,  13,  1;
   [8] 1, 36,  85, 121, 129, 106,  61, 15,  1;
   [9] 1, 45, 113, 172, 201, 191, 145, 78, 17, 1.
.
Row 4 of the triangle:
A(0, 4) =  1 = card('').
A(1, 3) = 10 = card('', 0, 00, 000, 1, 10, 100, 11, 110, 111).
A(2, 2) = 13 = card('', 0, 00, 000, 0000, 1, 10, 100, 11, 110, 1100, 111, 1111).
A(3, 1) =  7 = card('', 0, 00, 000, 1, 11, 111).
A(4, 0) =  1 = card('').
		

Crossrefs

Cf. A239592 (main diagonal), A239331 (transposed array).

Programs

  • Maple
    A := (n, k) -> 1 + n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;
    # Alternative:
    ogf := n -> (1 + (n - 1)*x)^2 / (1 - x)^3:
    ser := n -> series(ogf(n), x, 12):
    row := n -> seq(coeff(ser(n), x, k), k = 0..9):
    seq(print(row(n)), n = 0..7);
  • SageMath
    def A(m: int, steps: int) -> int:
        if m == 0: return 1
        size = m * steps
        cset = set()
        for a in range(0, size + 1, m):
            S = [str(int(i < a)) for i in range(size)]
            C = Combinations(S)
            cset.update("".join(i for i in c) for c in C)
        return len(cset)
    def ARow(n: int, size: int) -> list[int]:
        return [A(n, k) for k in range(size + 1)]
    for n in range(8): print(ARow(n, 7))

Formula

A(n, k) = 1 + n*k*(4 + n*(k - 1))/2.
T(n, k) = 1 + k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = [x^k] (1 + (n - 1)*x)^2 / (1 - x)^3.
A(n, k) = hypergeom([-k, -2], [1], n).
A(n, k) = A361521(n, k) + 1.
Showing 1-10 of 14 results. Next