cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A195147 Concentric 18-gonal numbers.

Original entry on oeis.org

0, 1, 18, 37, 72, 109, 162, 217, 288, 361, 450, 541, 648, 757, 882, 1009, 1152, 1297, 1458, 1621, 1800, 1981, 2178, 2377, 2592, 2809, 3042, 3277, 3528, 3781, 4050, 4321, 4608, 4897, 5202, 5509, 5832, 6157, 6498, 6841, 7200, 7561, 7938, 8317, 8712, 9109
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 18, ..., and the same line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Main axis, perpendicular to A027468 in the same spiral.

Crossrefs

A195321 and A195316 interleaved.
Cf. A032527, A195047, A195048. Column 18 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023

A195317 Centered 40-gonal numbers.

Original entry on oeis.org

1, 41, 121, 241, 401, 601, 841, 1121, 1441, 1801, 2201, 2641, 3121, 3641, 4201, 4801, 5441, 6121, 6841, 7601, 8401, 9241, 10121, 11041, 12001, 13001, 14041, 15121, 16241, 17401, 18601, 19841, 21121, 22441, 23801, 25201, 26641, 28121, 29641, 31201, 32801, 34441, 36121
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Also centered tetracontagonal numbers or centered tetrakaicontagonal numbers. Also sequence found by reading the line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semi-axis opposite to A195322 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 20*n^2 - 20*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(5))/(8*sqrt(5)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+38*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(20*x^2 + 1) - 1.
a(n) = 2*A069133(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195321 a(n) = 18*n^2.

Original entry on oeis.org

0, 18, 72, 162, 288, 450, 648, 882, 1152, 1458, 1800, 2178, 2592, 3042, 3528, 4050, 4608, 5202, 5832, 6498, 7200, 7938, 8712, 9522, 10368, 11250, 12168, 13122, 14112, 15138, 16200, 17298, 18432, 19602, 20808, 22050, 23328, 24642, 25992, 27378, 28800, 30258, 31752
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 18, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Semi-axis opposite to A195316 in the same spiral.
Area of a square with diagonal 6n. - Wesley Ivan Hurt, Jun 19 2014
Number of identical tessellation tiles that are composed of 48 equilateral edge joined triangles that can be formed into a order n hexagon. The example tiles shown in the link below are tessellated with eight sphinx tiles. See A291582. - Craig Knecht, Sep 02 2017

Crossrefs

Programs

Formula

a(n) = 18*A000290(n) = 9*A001105(n) = 6*A033428(n) = 3*A033581(n) = 2*A016766(n).
G.f.: 18*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Jun 20 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 18*x*(1 + x)*exp(x).
a(n) = n*A008600(n) = A195147(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A195314 Centered 28-gonal numbers.

Original entry on oeis.org

1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Semi-axis opposite to A144555 in the same spiral.

Crossrefs

Programs

  • Magma
    [(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
  • PARI
    a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 14*n^2 - 14*n + 1.
G.f.: -x*(1 + 26*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 01 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5/7)*Pi/2)/(2*sqrt(35)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(14*x^2 + 1) - 1.
a(n) = 2*A069127(n) - 1. (End)

A195315 Centered 32-gonal numbers.

Original entry on oeis.org

1, 33, 97, 193, 321, 481, 673, 897, 1153, 1441, 1761, 2113, 2497, 2913, 3361, 3841, 4353, 4897, 5473, 6081, 6721, 7393, 8097, 8833, 9601, 10401, 11233, 12097, 12993, 13921, 14881, 15873, 16897, 17953, 19041, 20161, 21313, 22497, 23713, 24961, 26241, 27553, 28897, 30273
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Semi-axis opposite to A016802 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 16*n + 1.
G.f.: -x*(1 + 30*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3)*Pi/4)/(8*sqrt(3)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(16*x^2 + 1) - 1.
a(n) = 2*A069129(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195318 Centered 44-gonal numbers.

Original entry on oeis.org

1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195323 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 22*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(3*Pi/(2*sqrt(11)))/(6*sqrt(11)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+42*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(22*x^2 + 1) - 1.
a(n) = 2*A069173(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Showing 1-6 of 6 results.