cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A351354 Numbers k such that the k-th centered 40-gonal numbers (A195317) is a square.

Original entry on oeis.org

1, 3, 7, 45, 117, 799, 2091, 14329, 37513, 257115, 673135, 4613733, 12078909, 82790071, 216747219, 1485607537, 3889371025, 26658145587, 69791931223, 478361013021, 1252365390981, 8583840088783, 22472785106427, 154030760585065, 403257766524697, 2763969850442379
Offset: 1

Views

Author

Lamine Ngom, Feb 08 2022

Keywords

Comments

Corresponding square roots are listed in A351353.
3 and 7 are the unique primes in this sequence, a(2*n+1) and a(2*n) always sharing common factors that are closely linked to Fibonacci (A000045) and Lucas (A000032) numbers (detailed in formula section).
In addition, the ratio a(2*n+1)/a(2*n) converges to 2.618033988 ... = golden ratio squared: A104457.

Examples

			45 is in the sequence because the 45th centered 40-gonal number is 39601, which is a square: 199^2 = A000032(11)^2.
799 is in the sequence because the 799th centered 40-gonal number is 12752041, which is a square: 3571^2 = A000032(17)^2.
		

Crossrefs

Programs

  • Maple
    a[1] := 1: a[2] := 3: a[3] := 7: a[4] := 45: a[5] := 117:
    for n from 6 to 30 do a[n] := a[n - 1] + 18*a[n - 2] - 18*a[n - 3] - a[n - 4] + a[n - 5]: od:
    seq(a[n], n = 1 .. 30);
  • Mathematica
    LinearRecurrence[{1, 18, -18, -1, 1}, {1, 3, 7, 45, 117}, 30] (* Amiram Eldar, Feb 08 2022 *)

Formula

a(n) = A077259(n-1) + 1.
a(1)=1, a(2)=3, a(3)=7, a(4)=45, a(5)=117 and a(n) = a(n-1) + 18*a(n-2) - 18*a(n-3) - a(n-4) + a(n-5).
gcd(a(2*n+1), a(2*n)) = A000045(n)*(A000032(2*n) - 1)/2, if n is odd.
gcd(a(2*n+1), a(2*n)) = A000032(n)*(A000032(2*n) - 1)/2, if n is even.
A195317(a(n)) = A000032(A007310(n))^2 = A351353(n)^2.

A195148 Concentric 20-gonal numbers.

Original entry on oeis.org

0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric icosagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 20, ..., and the same line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Main axis, perpendicular to A124080 in the same spiral.

Crossrefs

A195322 and A195317 interleaved.
Cf. A032527, A195048, A195049. Column 20 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 5*n^2 + 2*(-1)^n-2;
a(n) = -a(n-1) + 10*n^2 - 10*n + 1. (End)
G.f.: x*(1+18*x+x^2)/((1+x)*(1-x)^3). - Bruno Berselli, Sep 27 2011
Sum_{n>=1} 1/a(n) = Pi^2/120 + tan(Pi/sqrt(5))*Pi/(8*sqrt(5)). - Amiram Eldar, Jan 17 2023

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A195314 Centered 28-gonal numbers.

Original entry on oeis.org

1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Semi-axis opposite to A144555 in the same spiral.

Crossrefs

Programs

  • Magma
    [(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
  • PARI
    a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 14*n^2 - 14*n + 1.
G.f.: -x*(1 + 26*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 01 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5/7)*Pi/2)/(2*sqrt(35)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(14*x^2 + 1) - 1.
a(n) = 2*A069127(n) - 1. (End)

A195315 Centered 32-gonal numbers.

Original entry on oeis.org

1, 33, 97, 193, 321, 481, 673, 897, 1153, 1441, 1761, 2113, 2497, 2913, 3361, 3841, 4353, 4897, 5473, 6081, 6721, 7393, 8097, 8833, 9601, 10401, 11233, 12097, 12993, 13921, 14881, 15873, 16897, 17953, 19041, 20161, 21313, 22497, 23713, 24961, 26241, 27553, 28897, 30273
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. Semi-axis opposite to A016802 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 16*n^2 - 16*n + 1.
G.f.: -x*(1 + 30*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3)*Pi/4)/(8*sqrt(3)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(16*x^2 + 1) - 1.
a(n) = 2*A069129(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195316 Centered 36-gonal numbers.

Original entry on oeis.org

1, 37, 109, 217, 361, 541, 757, 1009, 1297, 1621, 1981, 2377, 2809, 3277, 3781, 4321, 4897, 5509, 6157, 6841, 7561, 8317, 9109, 9937, 10801, 11701, 12637, 13609, 14617, 15661, 16741, 17857, 19009, 20197, 21421, 22681, 23977, 25309, 26677, 28081, 29521, 30997, 32509
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Semi-axis opposite to A195321 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 18*n + 1.
G.f.: -x*(1 + 34*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(7)*Pi/6)/(6*sqrt(7)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(18*x^2 + 1) - 1.
a(n) = 2*A069131(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A195318 Centered 44-gonal numbers.

Original entry on oeis.org

1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195323 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 22*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(3*Pi/(2*sqrt(11)))/(6*sqrt(11)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+42*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(22*x^2 + 1) - 1.
a(n) = 2*A069173(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A010022 a(0) = 1, a(n) = 40*n^2 + 2 for n>0.

Original entry on oeis.org

1, 42, 162, 362, 642, 1002, 1442, 1962, 2562, 3242, 4002, 4842, 5762, 6762, 7842, 9002, 10242, 11562, 12962, 14442, 16002, 17642, 19362, 21162, 23042, 25002, 27042, 29162, 31362, 33642, 36002, 38442, 40962, 43562, 46242, 49002, 51842, 54762, 57762, 60842
Offset: 0

Views

Author

Keywords

Comments

First bisection of A005901. - Bruno Berselli, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [40*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 40 Range[39]^2 + 2] (* Bruno Berselli, Feb 07 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {42, 162, 362}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+38*x+x^2)/(1-x)^3; a(n) = A008253(4n). - Bruno Berselli, Feb 07 2012
E.g.f.: (x*(x+1)*40+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(5)/40*Pi*coth(Pi*sqrt(5)/10) = 1.03983104279172.. - R. J. Mathar, May 07 2024
a(n) = 2*A158493(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A195317(n)+A195317(n+1) = 2+10*A016742(n), n>0. - R. J. Mathar, May 07 2024

A193251 Small rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 123, 605, 1687, 3609, 6611, 10933, 16815, 24497, 34219, 46221, 60743, 78025, 98307, 121829, 148831, 179553, 214235, 253117, 296439, 344441, 397363, 455445, 518927, 588049, 663051, 744173, 831655, 925737, 1026659, 1134661, 1249983, 1372865, 1503547, 1642269
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicosidodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448), centered squares (A001844) and centered pentagons (A005891)]

Crossrefs

Programs

Formula

a(n) = 40*n^3 - 60*n^2 + 22*n - 1.
G.f.: x*(1+x)*(x^2 + 118*x + 1)/(x-1)^4. - R. J. Mathar, Aug 26 2011
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: 1 + exp(x)*(-1 + 2*x + 60*x^2 + 40*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A060747(n)*A195317(n). (End)

A201786 Primes of the form 5*k^2 - 4.

Original entry on oeis.org

41, 241, 401, 601, 1801, 3121, 4201, 4801, 5441, 6121, 6841, 9241, 13001, 15121, 17401, 19841, 21121, 22441, 23801, 26641, 29641, 32801, 45121, 47041, 51001, 57241, 63841, 75641, 78121, 91121, 96601, 99401, 102241, 108041, 114001, 117041
Offset: 1

Views

Author

Vincenzo Librandi, Dec 05 2011

Keywords

Comments

Also, primes of the form 20*k^2 + 20*k + 1. - Jan Rider, May 22 2018

Crossrefs

Programs

  • Magma
    [a: n in [1..400] | IsPrime(a) where a is 5*n^2-4];
    
  • Mathematica
    Select[Table[5n^2-4,{n,1,1000}],PrimeQ]
  • PARI
    lista(nn) = for (n=1, nn, if (isprime(p=5*n^2-4), print1(p, ", "));); \\ Michel Marcus, May 22 2018
Showing 1-10 of 11 results. Next