cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gopinath A. R.

Gopinath A. R.'s wiki page.

Gopinath A. R. has authored 1 sequences.

A227959 Number of tilings using monominoes and L-trominoes in 2 X n chessboard, such that three monominoes cannot occur together in shape of L-tromino.

Original entry on oeis.org

1, 1, 4, 6, 20, 38, 104, 220, 556, 1244, 3024, 6944, 16576, 38536, 91216, 213280, 502864, 1178928, 2774592, 6512864, 15315072, 35969952, 84550912, 198634048, 466825152, 1096838208, 2577550336, 6056474880, 14232064256, 33441977216, 78583660288, 184655188480
Offset: 0

Author

Gopinath A. R., Aug 01 2013

Keywords

Crossrefs

Cf. A127864.

Programs

  • Magma
    I:=[1,1,4,6,20]; [n le 5 select I[n] else 4*Self(n-2)+2*Self(n-3)+ 2*Self(n-4)+4*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Apr 30 2018
  • Mathematica
    LinearRecurrence[{0, 4, 2, 2, 4}, {1, 1, 4, 6, 20}, 33] (* or *) CoefficientList[Series[(1 + x)/(1 - 4 x^2 - 2 x^3 - 2 x^4 - 4 x^5), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 30 2018 *)
  • PARI
    Vec( (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5) +O(x^66) ) \\ Joerg Arndt, Aug 07 2013
    
  • Sage
    fx = (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5)
    fxt = taylor(fx,x,0,50)
    for i in range(51):
        print(i, fxt.coefficient(x,i))
    

Formula

a(n) = 4*a(n-2) + 2*a(n-3) + 2*a(n-4) + 4*a(n-5), with a(0)=1, a(1)=1, a(2)=4, a(3)=6, and a(4)=20.
G.f.: (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5).
Asymptotic formula: a(n) ~ 0.581189405182598 * 2.3498153157195^n.