cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Craig Ferguson

Craig Ferguson's wiki page.

Craig Ferguson has authored 8 sequences.

A193228 Truncated octahedron with faces of centered polygons.

Original entry on oeis.org

1, 39, 185, 511, 1089, 1991, 3289, 5055, 7361, 10279, 13881, 18239, 23425, 29511, 36569, 44671, 53889, 64295, 75961, 88959, 103361, 119239, 136665, 155711, 176449, 198951, 223289, 249535, 277761, 308039, 340441, 375039, 411905, 451111, 492729, 536831, 583489
Offset: 1

Author

Craig Ferguson, Jul 18 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated octahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered squares (A001844) and centered hexagons (A003215)]

Programs

  • Excel
    (copy and paste the following formula =12*ROW()^3-18*ROW()^2+8*ROW()-1 fill down to desired size.)
    
  • Magma
    [12*n^3-18*n^2+8*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[12n^3-18n^2+8n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,39,185,511},40] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    vector(40, n, 12*n^3 - 18*n^2 + 8*n - 1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 12*n^3 - 18*n^2 + 8*n - 1.
G.f.: x*(1+x)*(x^2 + 34*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=39, a(2)=185, a(3)=511. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 - (1 - 2*x - 18*x^2 - 12*x^3)*exp(x). - G. C. Greubel, Nov 10 2018

A193248 Truncated dodecahedron, and truncated icosahedron with faces of centered polygons.

Original entry on oeis.org

1, 93, 455, 1267, 2709, 4961, 8203, 12615, 18377, 25669, 34671, 45563, 58525, 73737, 91379, 111631, 134673, 160685, 189847, 222339, 258341, 298033, 341595, 389207, 441049, 497301, 558143, 623755, 694317, 770009, 851011, 937503, 1029665, 1127677, 1231719
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a truncated dodecahedron or truncated icosahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered decagons (A062786)] & [centered hexagons (A003215) and centered pentagons (A005891)] respectively.

Crossrefs

Programs

  • Magma
    [30*n^3-45*n^2+17*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[30n^3-45n^2+17n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,93,455,1267},40] (* Harvey P. Dale, Aug 28 2011 *)
  • PARI
    vector(40, n, 30*n^3 - 45*n^2 + 17*n - 1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 30*n^3 - 45*n^2 + 17*n - 1.
G.f.: x*(1+x)*(x^2 + 88*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=93, a(3)=455, a(4)=1267. - Harvey P. Dale, Aug 28 2011
E.g.f.: 1 - (1 - 2*x - 45*x^2 - 30*x^3)*exp(x). - G. C. Greubel, Nov 10 2018

A193250 Small rhombicuboctahedron with faces of centered polygons.

Original entry on oeis.org

1, 51, 245, 679, 1449, 2651, 4381, 6735, 9809, 13699, 18501, 24311, 31225, 39339, 48749, 59551, 71841, 85715, 101269, 118599, 137801, 158971, 182205, 207599, 235249, 265251, 297701, 332695, 370329, 410699, 453901, 500031, 549185, 601459, 656949, 715751
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicuboctahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered squares (A001844)]

Crossrefs

Cf. A079414 (partial sums).

Programs

  • Excel
    copy and paste the following formula   =16 *ROW()^3-24 *ROW()^2+10*ROW()-1 fill down to desired size.
    
  • Magma
    [16*n^3-24*n^2+10*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
    
  • Mathematica
    Table[16n^3-24n^2+10n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,51,245,679},40] (* Harvey P. Dale, Aug 27 2011 *)
  • PARI
    vector(40, n, 16*n^3-24*n^2+10*n-1) \\ G. C. Greubel, Nov 10 2018

Formula

a(n) = 16*n^3 - 24*n^2 + 10*n - 1.
G.f.: x*(1+x)*(x^2 + 46*x + 1) / (x-1)^4. - R. J. Mathar, Aug 26 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=51, a(2)=245, a(3)=679. - Harvey P. Dale, Aug 27 2011
E.g.f.: 1 + (-1 + 2*x + 24*x^2 + 16*x^3)*exp(x). - G. C. Greubel, Nov 10 2018

A193251 Small rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 123, 605, 1687, 3609, 6611, 10933, 16815, 24497, 34219, 46221, 60743, 78025, 98307, 121829, 148831, 179553, 214235, 253117, 296439, 344441, 397363, 455445, 518927, 588049, 663051, 744173, 831655, 925737, 1026659, 1134661, 1249983, 1372865, 1503547, 1642269
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicosidodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448), centered squares (A001844) and centered pentagons (A005891)]

Crossrefs

Programs

Formula

a(n) = 40*n^3 - 60*n^2 + 22*n - 1.
G.f.: x*(1+x)*(x^2 + 118*x + 1)/(x-1)^4. - R. J. Mathar, Aug 26 2011
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: 1 + exp(x)*(-1 + 2*x + 60*x^2 + 40*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A060747(n)*A195317(n). (End)

A193218 Number of vertices in truncated tetrahedron with faces that are centered polygons.

Original entry on oeis.org

1, 21, 95, 259, 549, 1001, 1651, 2535, 3689, 5149, 6951, 9131, 11725, 14769, 18299, 22351, 26961, 32165, 37999, 44499, 51701, 59641, 68355, 77879, 88249, 99501, 111671, 124795, 138909, 154049, 170251, 187551, 205985, 225589, 246399, 268451, 291781, 316425
Offset: 1

Author

Craig Ferguson, Jul 18 2011

Keywords

Comments

The sequence starts with a central vertex and expands outward with (n-1) centered polygonal pyramids producing a truncated tetrahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon in each face. For centered triangles see A005448 and centered hexagons A003215.
This sequence is the 18th in the series (1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496 and t = 36. While adjusting for offsets, the beginning sequence A049480 is generated by adding the square pyramidal numbers A000330 to the odd numbers A005408 and each subsequent sequence is found by adding another set of square pyramidals A000330. (T/2) * A000330(n) + A005408(n). At 30 * A000330 + A005408 = centered dodecahedral numbers, 36 * A000330 + A005408 = A193228 truncated octahedron and 90 * A000330 + A005408 = A193248 = truncated icosahedron and dodecahedron. All five of the "Centered Platonic Solids" numbers sequences are in this series of sequences. Also 4 out of five of the "truncated" platonic solid number sequences are in this series. - Bruce J. Nicholson, Jul 06 2018
It would be good to have a detailed description of how the sequence is constructed. Maybe in the Examples section? - N. J. A. Sloane, Sep 07 2018

Crossrefs

Cf. A260810 (partial sums).

Programs

  • Magma
    [6*n^3-9*n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Aug 30 2011
  • Mathematica
    Table[6 n^3 - 9 n^2 + 5 n - 1, {n, 35}] (* Alonso del Arte, Jul 18 2011 *)
    CoefficientList[Series[(1+x)*(x^2+16*x+1)/(1-x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)

Formula

a(n) = 6*n^3 - 9*n^2 + 5*n - 1.
G.f.: x*(1+x)*(x^2+16*x+1) / (1-x)^4. - R. J. Mathar, Aug 26 2011
a(n) = 18 * A000330(n-1) + A005408(n-1) = A063496(n) + A006331(n-1). - Bruce J. Nicholson, Jul 06 2018

A193253 Great rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 183, 905, 2527, 5409, 9911, 16393, 25215, 36737, 51319, 69321, 91103, 117025, 147447, 182729, 223231, 269313, 321335, 379657, 444639, 516641, 596023, 683145, 778367, 882049, 994551, 1116233, 1247455, 1388577, 1539959, 1701961, 1874943, 2059265, 2255287
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of n-2 edges and n-1 vertices to complete the centered polygon of each face.

Crossrefs

Cf. A001844 (centered squares), A062786 (centered decagons), and A003215 (centered hexagons).

Programs

  • Excel
    =60*ROW()^3-90*ROW()^2+32*ROW()-1 fill down  to desired size.
    
  • Magma
    [60*n^3-90*n^2+32*n-1: n in [1..40]] // Vincenzo Librandi, Feb 18 2012
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 183, 905, 2527}, 50] (* Vincenzo Librandi, Feb 18 2012 *)
    a[n_]:=60*n^3 - 90*n^2 + 32*n - 1 ; Array[a, 50] (* or *)
    CoefficientList[Series[(1 + x)*(1 + 178*x + x^2)/(1 - x)^4 , {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
  • PARI
    a(n)=60*n^3-90*n^2+32*n-1 \\ Charles R Greathouse IV, Feb 12 2012
    

Formula

a(n) = 60*n^3 - 90*n^2 + 32*n - 1.
G.f.: x*(1 + 179*x + 179*x^2 + x^3)/(1-x)^4 = x*(1+x)*(1 + 178*x + x^2)/(1-x)^4. - Colin Barker, Feb 12 2012

A193249 Snub dodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 153, 755, 2107, 4509, 8261, 13663, 21015, 30617, 42769, 57771, 75923, 97525, 122877, 152279, 186031, 224433, 267785, 316387, 370539, 430541, 496693, 569295, 648647, 735049, 828801, 930203, 1039555, 1157157, 1283309, 1418311, 1562463, 1716065, 1879417
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a snub dodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered pentagons (A005891)]

Programs

  • Excel
    =50*ROW()^3-75*ROW()^2+27*ROW()-1 fill down to desired size.
    
  • Magma
    [50*n^3-75*n^2+27*n-1: n in [1..34]];  // Bruno Berselli, Jul 22 2011
  • Maple
    A193249:=n->(2*n-1)*(25*n^2-25*n+1); seq(A193249(n), n=1..50); # Wesley Ivan Hurt, Apr 30 2014
  • Mathematica
    Table[(2 n - 1) (25 n^2 - 25 n + 1), {n, 50}] (* Wesley Ivan Hurt, Apr 30 2014 *)
  • PARI
    for(n=1, 34, print1(50*n^3-75*n^2+27*n-1", "));  \\ Bruno Berselli, Jul 21 2011
    

Formula

a(n) = 50*n^3-75*n^2+27*n-1 = (2*n-1)*(25*n^2-25*n+1).
G.f.: x*(1+x)*(1+148*x+x^2)/(1-x)^4. - Bruno Berselli, Jul 22 2011

A193252 Great rhombicuboctahedron with faces of centered polygons.

Original entry on oeis.org

1, 75, 365, 1015, 2169, 3971, 6565, 10095, 14705, 20539, 27741, 36455, 46825, 58995, 73109, 89311, 107745, 128555, 151885, 177879, 206681, 238435, 273285, 311375, 352849, 397851, 446525, 499015, 555465, 616019, 680821, 750015, 823745, 902155, 985389, 1073591
Offset: 1

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a great rhombicosidodecahedron. Each iteration requires the addition of (n-2) edge units and (n-1) vertices to complete the centered polygon of each face: centered squares, centered octagons and centered hexagons.

Crossrefs

First differences in 2*A158591.
Cf. A001844 (centered square numbers), A016754 (centered octagonal numbers), A003215 (centered hexagonal numbers).

Programs

  • Excel
    =24*ROW()^3-36*ROW()^2+14*ROW()-1
    
  • GAP
    List([1..40], n-> 24*n^3 -36*n^2 +14*n -1); # G. C. Greubel, Feb 26 2019
  • Magma
    A069190:=func; [(2*n-1)*A069190(n): n in [1..40]];  // Bruno Berselli, Jul 21 2011
    
  • Mathematica
    Table[24n^3-36n^2+14n-1,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,75,365,1015},40] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    for(n=1,40, print1(24*n^3-36*n^2+14*n-1", "));  \\ Bruno Berselli, Jul 21 2011
    
  • Sage
    [24*n^3 -36*n^2 +14*n -1 for n in (1..40)] # G. C. Greubel, Feb 26 2019
    

Formula

a(n) = 24*n^3 - 36*n^2 + 14*n - 1.
G.f.: x*(1+x)*(1+70*x+x^2)/(1-x)^4; a(n) = (2*n-1)*A069190(n). - Bruno Berselli, Jul 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=75, a(2)=365, a(3)=1015. - Harvey P. Dale, Jul 27 2011
a(n) = 72 * A000330(n-1) + A005408(n-1). - Bruce J. Nicholson, Feb 23 2019
E.g.f.: 1 + (-1 + 2*x + 36*x^2 + 24*x^3)*exp(x). - G. C. Greubel, Feb 26 2019