cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A244630 a(n) = 17*n^2.

Original entry on oeis.org

0, 17, 68, 153, 272, 425, 612, 833, 1088, 1377, 1700, 2057, 2448, 2873, 3332, 3825, 4352, 4913, 5508, 6137, 6800, 7497, 8228, 8993, 9792, 10625, 11492, 12393, 13328, 14297, 15300, 16337, 17408, 18513, 19652, 20825, 22032, 23273, 24548, 25857, 27200, 28577, 29988
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Comments

First bisection of A195047. - Bruno Berselli, Jul 03 2014
Norms of purely imaginary numbers in Z[sqrt(-17)] (for example, 3*sqrt(-17) has norm 153). - Alonso del Arte, Jun 23 2018

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), this sequence (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).

Programs

Formula

G.f.: 17*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 17*A000290(n). - Omar E. Pol, Jul 03 2014
a(n) = a(-n). - Muniru A Asiru, Jun 29 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 17*x*(1 + x)*exp(x).
a(n) = n*A008599(n) = A195047(2*n). (End)

A195147 Concentric 18-gonal numbers.

Original entry on oeis.org

0, 1, 18, 37, 72, 109, 162, 217, 288, 361, 450, 541, 648, 757, 882, 1009, 1152, 1297, 1458, 1621, 1800, 1981, 2178, 2377, 2592, 2809, 3042, 3277, 3528, 3781, 4050, 4321, 4608, 4897, 5202, 5509, 5832, 6157, 6498, 6841, 7200, 7561, 7938, 8317, 8712, 9109
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric octadecagonal numbers or concentric octakaidecagonal numbers.
Sequence found by reading the line from 0, in the direction 0, 18, ..., and the same line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Main axis, perpendicular to A027468 in the same spiral.

Crossrefs

A195321 and A195316 interleaved.
Cf. A032527, A195047, A195048. Column 18 of A195040. - Omar E. Pol, Sep 29 2011

Programs

Formula

G.f.: -x*(1+16*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (18*n^2 + 7*(-1)^n - 7)/4;
a(n) = -a(n-1) + 9*n^2 - 9*n + 1. (End)
Sum_{n>=1} 1/a(n) = Pi^2/108 + tan(sqrt(7)*Pi/6)*Pi/(6*sqrt(7)). - Amiram Eldar, Jan 17 2023

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A195323 a(n) = 22*n^2.

Original entry on oeis.org

0, 22, 88, 198, 352, 550, 792, 1078, 1408, 1782, 2200, 2662, 3168, 3718, 4312, 4950, 5632, 6358, 7128, 7942, 8800, 9702, 10648, 11638, 12672, 13750, 14872, 16038, 17248, 18502, 19800, 21142, 22528, 23958, 25432, 26950, 28512, 30118, 31768, 33462, 35200, 36982, 38808
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 22, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195318 in the same spiral.
Surface area of a rectangular prism with dimensions n, 2n and 3n. - Wesley Ivan Hurt, Apr 10 2015

Crossrefs

Programs

Formula

a(n) = 22*A000290(n) = 11*A001105(n) = 2*A033584(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Sep 19 2011
G.f.: 22*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Apr 10 2015
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 22*x*(1 + x)*exp(x).
a(n) = n*A008604(n) = A195149(2*n). (End)

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A195316 Centered 36-gonal numbers.

Original entry on oeis.org

1, 37, 109, 217, 361, 541, 757, 1009, 1297, 1621, 1981, 2377, 2809, 3277, 3781, 4321, 4897, 5509, 6157, 6841, 7561, 8317, 9109, 9937, 10801, 11701, 12637, 13609, 14617, 15661, 16741, 17857, 19009, 20197, 21421, 22681, 23977, 25309, 26677, 28081, 29521, 30997, 32509
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 37, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Semi-axis opposite to A195321 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 18*n + 1.
G.f.: -x*(1 + 34*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(7)*Pi/6)/(6*sqrt(7)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(18*x^2 + 1) - 1.
a(n) = 2*A069131(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A153792 12 times pentagonal numbers: a(n) = 6*n*(3*n-1).

Original entry on oeis.org

0, 12, 60, 144, 264, 420, 612, 840, 1104, 1404, 1740, 2112, 2520, 2964, 3444, 3960, 4512, 5100, 5724, 6384, 7080, 7812, 8580, 9384, 10224, 11100, 12012, 12960, 13944, 14964, 16020, 17112, 18240, 19404, 20604, 21840, 23112, 24420
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Comments

For n>=1, a(n) is the first Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i)+d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 10 2016
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2. - Emeric Deutsch, May 09 2018
This is the number of overlapping six sphinx tiled shapes in the sphinx tessellated hexagon described in A291582. - Craig Knecht, Sep 13 2017
a(n) is the number of words of length 3n over the alphabet {a,b,c}, where the number of b's plus the number of c's is 2. - Juan Camacho, Mar 03 2021
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Mar 12 2021

References

  • D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

Crossrefs

Programs

Formula

a(n) = 18*n^2 - 6*n = 12*A000326(n) = 6*A049450(n) = 4*A062741(n) = 3*A033579(n) = 2*A152743(n).
a(n) = 36*n + a(n-1) - 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 12*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
a(0)=0, a(1)=12, a(2)=60; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 11 2012
E.g.f.: 6*x*(2 + 3*x)*exp(x). - G. C. Greubel, Aug 29 2016
a(n) = A291582(n) - A195321(n) for n > 0. - Craig Knecht, Sep 13 2017
a(n) = A195321(n) - A008588(n). - Omar E. Pol, Mar 12 2021
From Amiram Eldar, May 05 2025: (Start)
Sum_{n>=1} 1/a(n) = log(3)/4 - Pi/(12*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(6*sqrt(3)) - log(2)/3. (End)

A069058 Numbers n such that A017666(n)=phi(n).

Original entry on oeis.org

1, 18, 72, 162, 648, 1152, 1458, 4608, 5832, 10368, 13122, 41472, 52488, 73728, 93312, 118098, 294912, 373248, 472392, 663552, 839808, 1062882, 2654208, 3359232, 4251528, 4718592, 5971968, 7558272, 9565938, 18874368, 23887872
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Comments

Appears to be a subset of A195321, i.e. all terms greater than 1 are of the form 18*n^2. - William J. Keith, May 25 2016
It also appears to be a subset of A003586, i.e., all the terms below 10^12 are of the form 2^i*3^j. - Giovanni Resta, May 26 2016

Crossrefs

Cf. A195321.

Programs

  • Mathematica
    Select[Range[10^6], Denominator@ Total[1/Divisors@ #] == EulerPhi@ # &] (* Michael De Vlieger, May 25 2016 *)
  • PARI
    for(n=1, 2500000, if(denominator(sumdiv(n,k,1/k)) == eulerphi(n), print1(n,",")))
    
  • PARI
    isok(n) = denominator(sigma(n)/n) == eulerphi(n); \\ Michel Marcus, May 26 2016

Extensions

More terms from Rick L. Shepherd, Apr 16 2002

A303302 a(n) = 34*n^2.

Original entry on oeis.org

0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
Offset: 0

Views

Author

Omar E. Pol, May 13 2018

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

Programs

  • Magma
    [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
  • Mathematica
    Table[34 n^2, {n, 0, 40}]
    LinearRecurrence[{3,-3,1},{0,34,136},50] (* Harvey P. Dale, Jul 23 2018 *)
  • PARI
    a(n) = 34*n^2;
    
  • PARI
    concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
    

Formula

a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Showing 1-10 of 10 results.