cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A153793 13 times pentagonal numbers: a(n) = 13*n*(3*n-1)/2.

Original entry on oeis.org

0, 13, 65, 156, 286, 455, 663, 910, 1196, 1521, 1885, 2288, 2730, 3211, 3731, 4290, 4888, 5525, 6201, 6916, 7670, 8463, 9295, 10166, 11076, 12025, 13013, 14040, 15106, 16211, 17355, 18538, 19760, 21021, 22321, 23660, 25038, 26455
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Crossrefs

Programs

  • Magma
    [13*n*(3*n-1)/2: n in [0..60]]; // Wesley Ivan Hurt, Aug 29 2016
  • Maple
    A153793:=n->13*n*(3*n-1)/2: seq(A153793(n), n=0..60); # Wesley Ivan Hurt, Aug 29 2016
  • Mathematica
    Table[13*n*(3*n-1)/2, {n,0,25}] (* or *) LinearRecurrence[{3,-3,1}, {0,13,65}, 25] (* G. C. Greubel, Aug 29 2016 *)
    13*PolygonalNumber[5,Range[0,40]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 16 2016 *)
  • PARI
    a(n) = (39*n^2 - 13*n)/2; \\ Altug Alkan, Aug 29 2016
    

Formula

a(n) = (39*n^2 - 13*n)/2 = 13*A000326(n).
a(n) = 39*n + a(n-1) - 26 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 13*x*(1 + 2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
From G. C. Greubel, Aug 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
E.g.f.: (13/2)*x*(2+3*x)*exp(x). (End)

A361521 Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 5, 4, 0, 0, 9, 12, 6, 0, 0, 14, 24, 21, 8, 0, 0, 20, 40, 45, 32, 10, 0, 0, 27, 60, 78, 72, 45, 12, 0, 0, 35, 84, 120, 128, 105, 60, 14, 0, 0, 44, 112, 171, 200, 190, 144, 77, 16, 0, 0, 54, 144, 231, 288, 300, 264, 189, 96, 18, 0
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Comments

A detailed combinatorial interpretation can be found in A361682.

Examples

			[0] 0,  0,  0,   0,   0,   0,   0,    0, ...  A000004
[1] 0,  2,  5,   9,  14,  20,  27,   35, ...  A000096
[2] 0,  4, 12,  24,  40,  60,  84,  112, ...  A046092
[3] 0,  6, 21,  45,  78, 120, 171,  231, ...  A081266
[4] 0,  8, 32,  72, 128, 200, 288,  392, ...  A139098
[5] 0, 10, 45, 105, 190, 300, 435,  595, ...
[6] 0, 12, 60, 144, 264, 420, 612,  840, ...  A153792
[7] 0, 14, 77, 189, 350, 560, 819, 1127, ...
       | A028347 |     A163761
     A005843  A067725
.
[0] 0;
[1] 0,  0;
[2] 0,  2,   0;
[3] 0,  5,   4,   0;
[4] 0,  9,  12,   6,   0;
[5] 0, 14,  24,  21,   8,   0;
[6] 0, 20,  40,  45,  32,  10,   0;
[7] 0, 27,  60,  78,  72,  45,  12,  0;
[8] 0, 35,  84, 120, 128, 105,  60, 14,  0;
[9] 0, 44, 112, 171, 200, 190, 144, 77, 16, 0;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> n*k*(4 + n*(k - 1))/2:
    for n from 0 to 7 do seq(A(n, k), k = 0..7) od;

Formula

A(n, k) = n*k*(4 + n*(k - 1))/2.
T(n, k) = k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = A361682(n, k) - 1.

A277983 a(n) = 54*n^2 - 78*n + 36.

Original entry on oeis.org

36, 12, 96, 288, 588, 996, 1512, 2136, 2868, 3708, 4656, 5712, 6876, 8148, 9528, 11016, 12612, 14316, 16128, 18048, 20076, 22212, 24456, 26808, 29268, 31836, 34512, 37296, 40188, 43188, 46296, 49512, 52836, 56268, 59808, 63456, 67212, 71076, 75048, 79128, 83316
Offset: 0

Views

Author

Emeric Deutsch, Nov 11 2016

Keywords

Comments

For n>=1, a(n) is the second Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2.

References

  • D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

Crossrefs

Cf. A153792.

Programs

  • Magma
    [54*n^2-78*n+36: n in [0..50]]; // Bruno Berselli, Nov 11 2016
    
  • Maple
    seq(54*n^2-78*n+36, n=0..40);
  • Mathematica
    Table[54 n^2 - 78 n + 36, {n, 0, 50}] (* Bruno Berselli, Nov 11 2016 *)
  • PARI
    a(n)=54*n^2-78*n+36 \\ Charles R Greathouse IV, Jun 17 2017
  • Sage
    [54*n^2-78*n+36 for n in range(50)] # Bruno Berselli, Nov 11 2016
    

Formula

O.g.f.: 12*(14*x^2 - 8*x + 3)/(1 - x)^3.
E.g.f.: 6*(9*x^2 - 4*x + 6)*exp(x). - Bruno Berselli, Nov 11 2016
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Jan 15 2022
a(n) = 12*A064225(n-1). - R. J. Mathar, Jul 22 2022
Showing 1-3 of 3 results.