A361521 Array read by descending antidiagonals. A(n, k) is the number of the nonempty multiset combinations of {0, 1} as defined in A361682.
0, 0, 0, 0, 2, 0, 0, 5, 4, 0, 0, 9, 12, 6, 0, 0, 14, 24, 21, 8, 0, 0, 20, 40, 45, 32, 10, 0, 0, 27, 60, 78, 72, 45, 12, 0, 0, 35, 84, 120, 128, 105, 60, 14, 0, 0, 44, 112, 171, 200, 190, 144, 77, 16, 0, 0, 54, 144, 231, 288, 300, 264, 189, 96, 18, 0
Offset: 0
Examples
[0] 0, 0, 0, 0, 0, 0, 0, 0, ... A000004 [1] 0, 2, 5, 9, 14, 20, 27, 35, ... A000096 [2] 0, 4, 12, 24, 40, 60, 84, 112, ... A046092 [3] 0, 6, 21, 45, 78, 120, 171, 231, ... A081266 [4] 0, 8, 32, 72, 128, 200, 288, 392, ... A139098 [5] 0, 10, 45, 105, 190, 300, 435, 595, ... [6] 0, 12, 60, 144, 264, 420, 612, 840, ... A153792 [7] 0, 14, 77, 189, 350, 560, 819, 1127, ... | A028347 | A163761 A005843 A067725 . [0] 0; [1] 0, 0; [2] 0, 2, 0; [3] 0, 5, 4, 0; [4] 0, 9, 12, 6, 0; [5] 0, 14, 24, 21, 8, 0; [6] 0, 20, 40, 45, 32, 10, 0; [7] 0, 27, 60, 78, 72, 45, 12, 0; [8] 0, 35, 84, 120, 128, 105, 60, 14, 0; [9] 0, 44, 112, 171, 200, 190, 144, 77, 16, 0;
Crossrefs
Programs
-
Maple
A := (n, k) -> n*k*(4 + n*(k - 1))/2: for n from 0 to 7 do seq(A(n, k), k = 0..7) od;
Formula
A(n, k) = n*k*(4 + n*(k - 1))/2.
T(n, k) = k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = A361682(n, k) - 1.
Comments