cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A135453 a(n) = 12*n^2.

Original entry on oeis.org

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0

Views

Author

Ben Paul Thurston, Dec 14 2007

Keywords

Comments

Areas of perfect 4:3 rectangles (for n > 0).
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A069190 in the same spiral. - Omar E. Pol, Sep 16 2011
(x,y,z) = (-a(n), 1 + n*a(n), 1 - n*a(n)) are solutions of the Diophantine equation x^3 + 2*y^3 + 2*z^3 = 4. - XU Pingya, Apr 30 2022

Examples

			192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
		

Crossrefs

Programs

Formula

a(n) = 12*A000290(n) = 6*A001105(n) = 4*A033428(n) = 3*A016742(n) = 2*A033581(n). - Omar E. Pol, Dec 13 2008
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/72 (A086729).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/144.
Product_{n>=1} (1 + 1/a(n)) = 2*sqrt(3)*sinh(Pi/(2*sqrt(3)))/Pi.
Product_{n>=1} (1 - 1/a(n)) = 2*sqrt(3)*sin(Pi/(2*sqrt(3)))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 12*x*(1 + x)/(1-x)^3.
E.g.f.: 12*x*(1 + x)*exp(x).
a(n) = n*A008594(n) = A195143(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Dec 17 2007
Minor edits from Omar E. Pol, Dec 15 2008

A069133 Centered 20-gonal (or icosagonal) numbers.

Original entry on oeis.org

1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, 9921, 10561, 11221, 11901, 12601, 13321, 14061, 14821, 15601, 16401, 17221, 18061, 18921, 19801
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 20, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Equals Narayana transform (A001263) of [1, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Semi-axis opposite to A033583 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5)=201 because 201 = 10*5^2 - 10*5 + 1 = 250 - 50 + 1.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = 10n^2 - 10n + 1.
a(n) = 20*n + a(n-1) - 20 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 18*x + x^2)/(1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=21, a(2)=61. - Harvey P. Dale, Apr 29 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3/5)*Pi/2)/(2*sqrt(15)).
Sum_{n>=1} a(n)/n! = 11*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/e - 1. (End)
a(n) = 12*A000217(n-1) + A016754(n-1). - John Elias, Oct 23 2020
E.g.f.: exp(x)*(1 + 10*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A144129 a(n) = ChebyshevT(3, n).

Original entry on oeis.org

0, 1, 26, 99, 244, 485, 846, 1351, 2024, 2889, 3970, 5291, 6876, 8749, 10934, 13455, 16336, 19601, 23274, 27379, 31940, 36981, 42526, 48599, 55224, 62425, 70226, 78651, 87724, 97469, 107910, 119071, 130976, 143649, 157114, 171395, 186516
Offset: 0

Views

Author

Keywords

Comments

The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=3, thus a(k) = |(P(3,0)-(-1)^k*P(3,2*k))/2|. - Peter Luschny, Jul 12 2009
Partial sums of A069190. - J. M. Bergot, Jul 13 2013

Crossrefs

Programs

  • Magma
    [ 4*n^3-3*n: n in [0..36] ]; // Klaus Brockhaus, Jan 11 2009
    
  • Magma
    I:=[0, 1, 26, 99]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Maple
    a := n -> (4*n^2-3)*n; # Peter Luschny, Jul 12 2009
  • Mathematica
    lst={};Do[AppendTo[lst,ChebyshevT[3,n]],{n,0,10^2}];lst
    Round[Table[N[Cosh[3 ArcCosh[n]], 100], {n, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
    CoefficientList[Series[x*(1+22*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,26,99},40] (* Harvey P. Dale, Apr 02 2015 *)
  • PARI
    a(n) = 4*n^3-3*n \\ Charles R Greathouse IV, Feb 08 2012
    

Formula

a(n) = 4*n^3 - 3*n. - Klaus Brockhaus, Jan 11 2009
G.f.: x*(1 + 22*x + x^2)/(1 - x)^4. - Klaus Brockhaus, Jan 11 2009
a(n) = cosh(3*arccosh(n)) = cos(3*arccos(n)). - Artur Jasinski, Feb 14 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = 24*A000292(n-1) + n. - Bruce J. Nicholson, Jun 12 2020
From Gerry Martens, Apr 06 2024: (Start)
a(n) = Imaginary part of -(1/2)*(2*n*i-1)^3.
a(n) = -4*(1/4 + n^2)^(3/2)*sin(3*arctan(2*n)). (End)

A195143 a(n) = n-th concentric 12-gonal number.

Original entry on oeis.org

0, 1, 12, 25, 48, 73, 108, 145, 192, 241, 300, 361, 432, 505, 588, 673, 768, 865, 972, 1081, 1200, 1321, 1452, 1585, 1728, 1873, 2028, 2185, 2352, 2521, 2700, 2881, 3072, 3265, 3468, 3673, 3888, 4105, 4332, 4561, 4800, 5041, 5292, 5545, 5808, 6073, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Concentric dodecagonal numbers. [corrected by Ivan Panchenko, Nov 09 2013]
Sequence found by reading the line from 0, in the direction 0, 12,..., and the same line from 1, in the direction 1, 25,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Main axis, perpendicular to A028896 in the same spiral.
Partial sums of A091998. - Reinhard Zumkeller, Jan 07 2012
Column 12 of A195040. - Omar E. Pol, Sep 28 2011

Crossrefs

A135453 and A069190 interleaved.
Cf. A016921 (6n+1), A016969 (6n+5), A091998 (positive integers of the form 12*k +- 1), A092242 (positive integers of the form 12*k +- 5).

Programs

  • Haskell
    a195143 n = a195143_list !! n
    a195143_list = scanl (+) 0 a091998_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Magma
    [(3*n^2+(-1)^n-1): n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
    
  • Mathematica
    Table[Sum[2*(-1)^(n - k + 1) + 6*k - 3, {k, n}], {n, 0, 47}] (* L. Edson Jeffery, Sep 14 2014 *)

Formula

From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = 3*n^2+(-1)^n-1.
a(n) = -a(n-1) + 6*n^2 - 6*n + 1. (End)
G.f.: -x*(1+10*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
a(n) = Sum_{k=1..n} (2*(-1)^(n-k+1) + 3*(2*k-1)), n>0, a(0) = 0. - L. Edson Jeffery, Sep 14 2014
Sum_{n>=1} 1/a(n) = Pi^2/72 + tan(Pi/sqrt(6))*Pi/(4*sqrt(6)). - Amiram Eldar, Jan 16 2023

A010014 a(0) = 1, a(n) = 24*n^2 + 2 for n>0.

Original entry on oeis.org

1, 26, 98, 218, 386, 602, 866, 1178, 1538, 1946, 2402, 2906, 3458, 4058, 4706, 5402, 6146, 6938, 7778, 8666, 9602, 10586, 11618, 12698, 13826, 15002, 16226, 17498, 18818, 20186, 21602, 23066, 24578, 26138, 27746, 29402, 31106, 32858, 34658, 36506, 38402, 40346
Offset: 0

Views

Author

Keywords

Comments

Number of points of L_infinity norm n in the simple cubic lattice Z^3. - N. J. A. Sloane, Apr 15 2008
Numbers of cubes needed to completely "cover" another cube. - Xavier Acloque, Oct 20 2003
First bisection of A005897. After 1, all terms are in A000408. - Bruno Berselli, Feb 06 2012

Crossrefs

Cf. A206399.

Programs

  • Mathematica
    Join[{1}, 24 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
  • PARI
    a(n) = if (n==0, 1, 24*n^2 + 2);
    vector(40, n, a(n-1)) \\ Altug Alkan, Sep 29 2015

Formula

a(n) = (2*n+1)^3 - (2*n-1)^3 for n >= 1. - Xavier Acloque, Oct 20 2003
G.f.: (1+x)*(1+22*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
a(n) = (2*n-1)^2 + (2*n+1)^2 + (4*n)^2 for n>0. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*24+2)*exp(x)-1. - Gopinath A. R., Feb 14 2012
a(n) = A005899(n) + A195322(n), n > 0. - R. J. Cano, Sep 29 2015
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(3)/24*Pi*coth(Pi*sqrt(3)/6) = 1.065052868574... - R. J. Mathar, May 07 2024
a(n) = 2*A158480(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069190(n)+A069190(n+1). - R. J. Mathar, May 07 2024

Extensions

More terms from Xavier Acloque, Oct 20 2003

A195317 Centered 40-gonal numbers.

Original entry on oeis.org

1, 41, 121, 241, 401, 601, 841, 1121, 1441, 1801, 2201, 2641, 3121, 3641, 4201, 4801, 5441, 6121, 6841, 7601, 8401, 9241, 10121, 11041, 12001, 13001, 14041, 15121, 16241, 17401, 18601, 19841, 21121, 22441, 23801, 25201, 26641, 28121, 29641, 31201, 32801, 34441, 36121
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Also centered tetracontagonal numbers or centered tetrakaicontagonal numbers. Also sequence found by reading the line from 1, in the direction 1, 41, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semi-axis opposite to A195322 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 20*n^2 - 20*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(5))/(8*sqrt(5)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+38*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(20*x^2 + 1) - 1.
a(n) = 2*A069133(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A069173 Centered 22-gonal numbers.

Original entry on oeis.org

1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, 10913, 11617, 12343, 13091, 13861, 14653, 15467, 16303, 17161, 18041, 18943, 19867, 20813
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 09 2002

Keywords

Examples

			a(5) = 221 because 11*5^2 - 11*5 + 1 = 275 - 55 + 1 = 221
For n=2, a(2)=22*2+1-22=23; n=3, a(3)=22*3+23-22=67; n=4, a(4)=22*4+67-22=133.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = 11*n^2 - 11*n + 1.
a(n) = 22*n + a(n-1) - 22 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(7/11)*Pi/2)/sqrt(77).
Sum_{n>=1} a(n)/n! = 12*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 12/e - 1. (End)
E.g.f.: exp(x)*(1 + 11 * x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: x*(1 + 20*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A069130 Centered 17-gonal numbers: (17*n^2 - 17*n + 2)/2.

Original entry on oeis.org

1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, 8433, 8977, 9538, 10116, 10711, 11323, 11952, 12598, 13261, 13941, 14638, 15352
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 17, 17, 0, 0, 0, ...]. - Gary W. Adamson, Mar 26 2010

Examples

			a(5) = 171 because (17*5^2 - 17*5 + 2)/2 = (425 - 85 + 2)/2 = 342/2 = 171.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = (17*n^2 - 17*n + 2)/2.
a(n) = 17*n + a(n-1) - 17 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1+15*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=52. - Harvey P. Dale, Jun 05 2011
Narayana transform (A001263) of [1, 17, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(3*Pi/(2*sqrt(17)))/(3*sqrt(17)).
Sum_{n>=1} a(n)/n! = 19*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 19/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 17*x^2/2) - 1. - Stefano Spezia, May 31 2022

Extensions

Typo in formula fixed by Omar E. Pol, Dec 22 2008
Showing 1-10 of 19 results. Next