cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005899 Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.

Original entry on oeis.org

1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
Offset: 0

Views

Author

Keywords

Comments

Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Binomial transform of a(n) is A055580(n). - Wesley Ivan Hurt, Apr 15 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as a(n)^2 - A002522(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Partial sums give A001845.
Column 2 * 2 of array A188645.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row 3 of A035607, A266213, A343599.
Column 3 of A113413, A119800, A122542.

Programs

Formula

G.f.: ((1+x)/(1-x))^3. - Simon Plouffe in his 1992 dissertation
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
For n > 0, a(n) = A001844(n-1) + A001844(n) = (n-1)^2 + 2n^2 + (n+1)^2. - Doug Bell, Aug 18 2015
For n > 0, a(n) = A010014(n) - A195322(n). - R. J. Cano, Sep 29 2015
For n > 0, a(n) = A000384(n+1) + A014105(n-1). - Bruce J. Nicholson, Oct 08 2017
a(n) = A008574(n) + A008574(n-1) + a(n-1). - Bruce J. Nicholson, Dec 18 2017
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
a(n) = A035597(n)*3/n, for n>0. - Shel Kaphan, Feb 26 2023
E.g.f.: exp(x)*(2 + 4*x + 4*x^2) - 1. - Stefano Spezia, Mar 08 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024

A008590 Multiples of 8.

Original entry on oeis.org

0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
First differences of odd squares: a(n) = A016754(n) - A016754(n-1) for n > 0. - Reinhard Zumkeller, Nov 08 2009
Complement of A047592; A168181(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
For n >= 1, number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) = n. - Michel Marcus, Nov 28 2014
These terms are the area of square frames (using integer lengths), with specific instances where the area equals the sum of inner and outer perimeters (see example and formula below). The thickness of the frames are always 2, which is of further significance when considering that all regular polygons have an area that is equal to perimeter when apothem is 2. - Peter M. Chema, Apr 03 2016
From Lechoslaw Ratajczak, Sep 03 2017: (Start)
Conjecture: let gcd_2(b,c) be the second greatest common divisor and lcd_2(b,c) be the second least common divisor of not coprime integers b and c. Consecutive elements of this sequence (for a(n) > 0) are consecutive integers m for which both Sum_{k=1..m, gcd(k,m)<>1} gcd_2(k,m) and Sum_{k=1..m, gcd(k,m) <>1} lcd_2(k,m) are even numbers.
a(1) = 8 because 1+2+1+4 = 8 (8 is even) and 2+2+2+2 = 8 (8 is even).
a(2) = 16 because 1+2+1+4+1+2+1+8 = 20 (20 is even) and 2+2+2+2+2+2+2+2 = 16 (16 is even).
a(3) = 24 because 1+1+2+3+4+1+1+6+1+1+4+3+2+1+1+12 = 44 (44 is even) and 2+3+2+2+2+3+2+2+2+3+2+2+2+3+2+2 = 36 (36 is even).
The conjecture was checked for 5*10^4 consecutive integers. (End)

Examples

			Beginning with n = 2, illustration of the terms as the area of square frames, where area equals the sum of inner and outer perimeters:
                                                                _ _ _ _ _ _ _ _
                                              _ _ _ _ _ _ _    |               |
                              _ _ _ _ _ _    |             |   |    _ _ _ _    |
                _ _ _ _ _    |           |   |    _ _ _    |   |   |       |   |
   _ _ _ _     |         |   |    _ _    |   |   |     |   |   |   |       |   |
  |       |    |    _    |   |   |   |   |   |   |     |   |   |   |       |   |
  |       |    |   |_|   |   |   |_ _|   |   |   |_ _ _|   |   |   |_ _ _ _|   |
  |       |    |         |   |           |   |             |   |               |
  |_ _ _ _|    |_ _ _ _ _|   |_ _ _ _ _ _|   |_ _ _ _ _ _ _|   |_ _ _ _ _ _ _ _|
  a(2) = 16      a(3) = 24     a(4) = 32        a(5) = 40          a(6) = 48
The inner square has side n-2 and outer square side n+2, pursuant to the above and related formula. Note that a(2) is simply the square 4*4, with the inner square having side 0; considering the inner square as a center point, this frame also has thickness of 2.
E.g., for a(4), the square frame is formed by a 6 X 6 outer square and a 2 X 2 inner square, with the area (6 X 6 minus 2 X 2) equal to the perimeter (4*6 + 4*2) at 32. - _Peter M. Chema_, Apr 03 2016
		

Crossrefs

Cf. A010014.
Essentially the same as A022144.
Subsequence of A185359, apart initial 0.

Programs

Formula

a(n) = (2*n+1)^2 - (2*n-1)^2. - Xavier Acloque, Oct 22 2003
From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 8*n = 2*a(n-1) - a(n-2).
G.f.: 8*x/(x-1)^2. (End)
a(n) = Sum_{k=1..4n} (i^k + 1)*(i^(4n-k) + 1), where i=sqrt(-1). - Bruno Berselli, Mar 19 2012
a(n) = (n+2)^2 - (n-2)^2 = 4*(n+2) + 4*(n-2), as exemplified below. - Peter M. Chema, Apr 03 2016
a(n) = A000567(n+1) - A045944(n-1). - Leo Tavares, Mar 25 2022
E.g.f.: 8*x*exp(x). - Stefano Spezia, Apr 03 2023

A016755 Odd cubes: a(n) = (2*n + 1)^3.

Original entry on oeis.org

1, 27, 125, 343, 729, 1331, 2197, 3375, 4913, 6859, 9261, 12167, 15625, 19683, 24389, 29791, 35937, 42875, 50653, 59319, 68921, 79507, 91125, 103823, 117649, 132651, 148877, 166375, 185193, 205379, 226981, 250047, 274625, 300763, 328509, 357911, 389017, 421875
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A010014. - Jani Melik, May 20 2013
Terms end in the repeating sequence 1, 7, 5, 3, 9, ... - Melvin Peralta, Jul 08 2015

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3.

Crossrefs

Programs

Formula

Sum_{n >= 0} 1/a(n) = 7 * zeta(3) / 8.
G.f.: (1+23*x+23*x^2+x^3)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
a(n) = A000578(A005408(n)). - Michel Marcus, Jul 09 2015
E.g.f.: exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). See A154537, row n=3. - Wolfdieter Lang, Mar 12 2017
From Bruce J. Nicholson, Dec 08 2019: (Start)
a(n) = 24 * A000330(n) + A005408(n).
a(n) = 2 * A005917(n+1) - A005408(n). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi^3/32 (A153071). - Amiram Eldar, Oct 10 2020
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/12)*(1 + sqrt(2)*cosh(sqrt(3)*Pi/4)) (Chamberland and Straub, 2013). - Amiram Eldar, Jan 26 2024

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A343640 Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D square spiral filling space with shells of increasing radius for the sup-norm, in turn filled by squares extending from one pole to the opposite one.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 0, 0, -2, 1, 0, -2, 1, 1, -2, 0, 1, -2, -1, 1, -2, -1, 0, -2, -1, -1, -2, 0, -1, -2, 1, -1, -2
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

This is a 3D generalization of the 2D square spiral and could be used to produce a 3D variant of Ulam's prime spiral.
See A343630 for an analog using the Euclidean or 2-norm instead of the sup- or oo-norm used here, so points are partitioned in spheres and circles instead of squares and cubes here.
The integer lattice points, Z^3, are listed in order of increasing sup norm R = max(|x|, |y|, |z|). Each "sphere" or shell of given radius R is filled starting at the North or South pole using concentric squares on the top and bottom face and squares of fixed size (2R+1) X (2R+1) at intermediate z-coordinates. Each square (circle for the sup-norm) is filled in the sense of increasing longitude, where the positive x axis corresponds to longitude 0, i.e., the points (r,0,z), (0,r,z), (-r,0,z) and (0,-r,z) are visited in this order. The z-values are alternatively increasing and decreasing (so over a period of two shells they follow the same rectangle-wave shape as the x-values do over the period of each square).
The sequence can be seen as a table with row length of 3, where each row corresponds to the (x,y,z)-coordinates of one point (then the three columns are A343641, A343642 and A343643), or as a table with row lengths 3*A010014, where A010014(r) is the number of points with sup-norm r.
There are (2n+1)^3 integer lattice points with sup norm <= n. Therefore, the point number n (where 0 is the origin) is in the shell r = round(n^(1/3)/2) = floor(...+1/2). Within shell r, which starts with the point number (2r-1)^3 (except for r=0), the first and last (2r+1)^2 points are on square spirals on the top and bottom faces, and the other points are on 2r-1 squares forming "belts" of 8r points each, on the side faces of the cube.

Examples

			Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 3*3 + 4*2 + 3*3 = 26 points with oo-norm 1, i.e., all points with coordinates within {-1, 0, 1} except for the origin. They are listed in a square spiral starting at the North Pole: (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), (-1,0,1), (-1,-1,1), (0,-1,1), (1,-1,1); then on the equator:  (1,0,0), (1,1,0), (0,1,0), (-1,1,0), (-1,0,0), (-1,-1,0), (0,-1,0), (1,-1,0), and then on the South face using an inward spiral: (1,0,-1), (1,1,-1), (0,1,-1), (-1,1,-1), (-1,0,-1), (-1,-1,-1), (0,-1,-1), (1,-1,-1), (0,0,-1).
Since there are no empty shells, the z-coordinate is always increasing for even r and decreasing for odd r.
		

Crossrefs

Cf. A343641, A343642, A343643 (list of x, y resp. z-coordinates only).
Cf. A343631, A343632, A343633 (variant using the Euclidean norm => circle shaped spirals), A342561, A343632, A342563 (another variant).
Cf. A010014 (number of points on a shell with given radius), A016755.
Cf. A174344, A268038, A274923 (2-dimensional square spiral).

Programs

  • PARI
    A343640_row(n)={local(L=List(), a(r, z, d=I)= if(r, for(i=1,8*r, listput(L,[real(r),imag(r),z]); r+=d; abs(real(r))==abs(imag(r)) && d*=I), listput(L,[0,0,z])), s=(-1)^n /* flip South <-> North for odd n */); /* main prog: (1) square spiral on South face from center to board */ for(d=!n,n, a(d,-s*n)); /* (2) "equatorial(?) bands" from South to North */ for(z=1-n,n-1, a(n,s*z)); /* (3) square spiral on North face ending in pole */ for(d=0,n, a(n-d,s*n)); Vec(L)} \\ row n of the table = list of points (x,y,z) in the shell n, i.e., with sup norm n. [Missing "s*" in a(n,s*z) added on May 27 2021]
    A343640_vec=concat([A343640_row(r) | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each!

A343643 Z-coordinate of points following the 3D square spiral defined in A343640.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See A343640 for more information about this 3D generalization of the 2D Ulam type square spiral.
The sequence can be seen as a table with row lengths A010014, where A010014(r) is the number of points of Z^3 with sup-norm r.
The graph of this sequence oscillates with increasing amplitude and wave length.

Crossrefs

Cf. A343640 (triples), A343641 and A343642 (list of X and Y-coordinates).
Cf. A343633 (variant using the Euclidean norm), A342563 (another variant).
Cf. A010014 (number of points on a shell with given radius => row lengths).

Programs

  • PARI
    A343643_vec=concat([[P[3]| P<-A343640_row(n)] | n<-[0..2]]) \\ From 0 up to n there are (2n+1)^3 points with 3 coordinates each.

A110907 Number of points in the standard root system version of the D_3 (or f.c.c.) lattice having L_infinity norm n.

Original entry on oeis.org

1, 12, 50, 108, 194, 300, 434, 588, 770, 972, 1202, 1452, 1730, 2028, 2354, 2700, 3074, 3468, 3890, 4332, 4802, 5292, 5810, 6348, 6914, 7500, 8114, 8748, 9410, 10092, 10802, 11532, 12290, 13068, 13874, 14700, 15554, 16428, 17330, 18252, 19202
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2008

Keywords

Comments

This lattice consists of all points (x,y,z) where x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
The sequence for the D_k lattice has the terms ((2*n+1)^k-(2*n-1)^k)/2, if k is even, and the terms ((2n+1)^k-(2*n-1)^k)/2+(-1)^n if k is odd (like here for k=3). The sequence for A_2 is A008458, for A_3 A010006, for A_4 the first differences of A083669. A_5 is 2+2*n^2*(25+44*n^2) if n>0, and 1 if n=0. - R. J. Mathar, Feb 09 2010

Examples

			a(0) = 1: 000
a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates
a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.

Crossrefs

Cf. A117216, A022144, A010014, A175112 (D_5), A175114 (D_6).

Programs

  • Maple
    A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z,'even') then m := max( abs(x),abs(y),abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n),n=0..40) ; # R. J. Mathar, Feb 03 2010
  • Mathematica
    a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)

Formula

From R. J. Mathar, Feb 03 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = 1 + (-1)^n + 12*n^2, n>0.
G.f.: 1 - 2*x*(6 + 13*x + 4*x^2 + x^3)/((1+x)*(x-1)^3). (End)

Extensions

I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see A117216), D_5, ..., E_6, E_7, E_8.
Extended by R. J. Mathar, Feb 03 2010
Removed the "conjectured" attribute from formulas - R. J. Mathar, Feb 27 2010

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024

A343641 X-coordinate of points following the 3D square spiral defined in A343640.

Original entry on oeis.org

0, 0, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 0, 0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See A343640 for more about this 3D generalization of the 2D Ulam type square spiral.
The sequence can be seen as a table with row lengths A010014, where A010014(r) is the number of points of Z^3 with sup-norm r.

Crossrefs

Cf. A343640 (triples), A343642 and A343643 (list of y and z-coordinates).
Cf. A343631 (variant using the Euclidean norm), A342561 (another variant).
Cf. A010014 (number of points on a shell with given radius => row lengths).

Programs

  • PARI
    A343641_vec=concat([[P[1]| P<-A343640_row(r)] | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each.

A343642 Y-coordinate of points following the 3D square spiral defined in A343640.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See A343640 for more information about this 3D generalization of the 2D Ulam type square spiral.
The sequence can be seen as a table with row lengths A010014, where A010014(r) is the number of points of Z^3 with sup-norm r.

Crossrefs

Cf. A343641, A343643 (list of x and z-coordinates).
Cf. A343632 (variant using the Euclidean norm), A342562 (another variant).
Cf. A010014 (number of points on a shell with given radius => row lengths).

Programs

  • PARI
    A343642_vec=concat([[P[2]| P<-A343640_row(n)] | n<-[0..2]]) \\ From 0 up to n there are (2n+1)^3 points with 3 coordinates each.
Showing 1-10 of 11 results. Next