A005899
Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.
Original entry on oeis.org
1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
Offset: 0
- H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
- Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
- B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
- R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Barry Balof, Restricted tilings and bijections, J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Pierre de la Harpe, On the prehistory of growth of groups, arXiv:2106.02499 [math.GR], 2021.
- R. W. Grosse-Kunstleve, Coordination Sequences and Encyclopedia of Integer Sequences
- R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Carlos I. Perez-Sanchez, The Spectral Action on quivers, arXiv:2401.03705 [math.RT], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Reticular Chemistry Structure Resource (RCSR), The pcu tiling (or net)
- Reticular Chemistry Structure Resource (RCSR), The tfs tiling (or net)
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
- N. J. A. Sloane, Illustration of a(0)=1, a(1)=6, a(2)=18 (from Teo-Sloane 1985)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
The 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
-
[4*n^2 + 2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 26 2015
-
A005899:=n->4*n^2 + 2; seq(A005899(n), n=0..50); # Wesley Ivan Hurt, Apr 15 2014
-
Join[{1},4Range[40]^2+2] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{6,18,38},40]] (* Harvey P. Dale, Nov 08 2011 *)
-
Vec(((1+x)/(1-x))^3 + O(x^100)) \\ Altug Alkan, Oct 26 2015
A008590
Multiples of 8.
Original entry on oeis.org
0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432
Offset: 0
Beginning with n = 2, illustration of the terms as the area of square frames, where area equals the sum of inner and outer perimeters:
_ _ _ _ _ _ _ _
_ _ _ _ _ _ _ | |
_ _ _ _ _ _ | | | _ _ _ _ |
_ _ _ _ _ | | | _ _ _ | | | | |
_ _ _ _ | | | _ _ | | | | | | | | |
| | | _ | | | | | | | | | | | | |
| | | |_| | | |_ _| | | |_ _ _| | | |_ _ _ _| |
| | | | | | | | | |
|_ _ _ _| |_ _ _ _ _| |_ _ _ _ _ _| |_ _ _ _ _ _ _| |_ _ _ _ _ _ _ _|
a(2) = 16 a(3) = 24 a(4) = 32 a(5) = 40 a(6) = 48
The inner square has side n-2 and outer square side n+2, pursuant to the above and related formula. Note that a(2) is simply the square 4*4, with the inner square having side 0; considering the inner square as a center point, this frame also has thickness of 2.
E.g., for a(4), the square frame is formed by a 6 X 6 outer square and a 2 X 2 inner square, with the area (6 X 6 minus 2 X 2) equal to the perimeter (4*6 + 4*2) at 32. - _Peter M. Chema_, Apr 03 2016
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Ch. Berdellé, Démonstration élémentaire d’un théorème énoncé par M. E. Catalan, Bulletin de la S. M. F., tome 17 (1889), p. 102. [Every positive multiple of 8 is the sum of 8 odd squares.]
- E. Catalan, Extrait d’une lettre, Bulletin de la S. M. F., tome 17 (1889), pp. 205-206.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 320.
- Tanya Khovanova, Recursive Sequences.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Leo Tavares, Illustration: Square Ray Frames
- Index entries for linear recurrences with constant coefficients, signature (2,-1)
Subsequence of
A185359, apart initial 0.
A016755
Odd cubes: a(n) = (2*n + 1)^3.
Original entry on oeis.org
1, 27, 125, 343, 729, 1331, 2197, 3375, 4913, 6859, 9261, 12167, 15625, 19683, 24389, 29791, 35937, 42875, 50653, 59319, 68921, 79507, 91125, 103823, 117649, 132651, 148877, 166375, 185193, 205379, 226981, 250047, 274625, 300763, 328509, 357911, 389017, 421875
Offset: 0
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Marc Chamberland and Armin Straub, On gamma quotients and infinite products, Advances in Applied Mathematics, Vol. 51, No. 5 (2013), pp. 546-562.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A195322
a(n) = 20*n^2.
Original entry on oeis.org
0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0
From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Léo Sauvé, Problem 53, Crux Mathematicorum, Vol. 1, Nov. 1975, page 88.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
List([0..10^3],n->20*n^2); # Muniru A Asiru, Feb 01 2018
-
[20*n^2: n in [0..40]]; // Vincenzo Librandi, Sep 20 2011
-
a := n -> 20*n^2; seq(a(n), n=0..10^3); # Muniru A Asiru, Feb 01 2018
-
20 Range[0, 40]^2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 20, 80}, 50] (* Harvey P. Dale, Jan 18 2013 *)
-
a(n) = 20*n^2 \\ Charles R Greathouse IV, Oct 07 2015
A343640
Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D square spiral filling space with shells of increasing radius for the sup-norm, in turn filled by squares extending from one pole to the opposite one.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 0, 0, -2, 1, 0, -2, 1, 1, -2, 0, 1, -2, -1, 1, -2, -1, 0, -2, -1, -1, -2, 0, -1, -2, 1, -1, -2
Offset: 0
Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 3*3 + 4*2 + 3*3 = 26 points with oo-norm 1, i.e., all points with coordinates within {-1, 0, 1} except for the origin. They are listed in a square spiral starting at the North Pole: (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), (-1,0,1), (-1,-1,1), (0,-1,1), (1,-1,1); then on the equator: (1,0,0), (1,1,0), (0,1,0), (-1,1,0), (-1,0,0), (-1,-1,0), (0,-1,0), (1,-1,0), and then on the South face using an inward spiral: (1,0,-1), (1,1,-1), (0,1,-1), (-1,1,-1), (-1,0,-1), (-1,-1,-1), (0,-1,-1), (1,-1,-1), (0,0,-1).
Since there are no empty shells, the z-coordinate is always increasing for even r and decreasing for odd r.
-
A343640_row(n)={local(L=List(), a(r, z, d=I)= if(r, for(i=1,8*r, listput(L,[real(r),imag(r),z]); r+=d; abs(real(r))==abs(imag(r)) && d*=I), listput(L,[0,0,z])), s=(-1)^n /* flip South <-> North for odd n */); /* main prog: (1) square spiral on South face from center to board */ for(d=!n,n, a(d,-s*n)); /* (2) "equatorial(?) bands" from South to North */ for(z=1-n,n-1, a(n,s*z)); /* (3) square spiral on North face ending in pole */ for(d=0,n, a(n-d,s*n)); Vec(L)} \\ row n of the table = list of points (x,y,z) in the shell n, i.e., with sup norm n. [Missing "s*" in a(n,s*z) added on May 27 2021]
A343640_vec=concat([A343640_row(r) | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each!
A343643
Z-coordinate of points following the 3D square spiral defined in A343640.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 0
Cf.
A343633 (variant using the Euclidean norm),
A342563 (another variant).
Cf.
A010014 (number of points on a shell with given radius => row lengths).
A110907
Number of points in the standard root system version of the D_3 (or f.c.c.) lattice having L_infinity norm n.
Original entry on oeis.org
1, 12, 50, 108, 194, 300, 434, 588, 770, 972, 1202, 1452, 1730, 2028, 2354, 2700, 3074, 3468, 3890, 4332, 4802, 5292, 5810, 6348, 6914, 7500, 8114, 8748, 9410, 10092, 10802, 11532, 12290, 13068, 13874, 14700, 15554, 16428, 17330, 18252, 19202
Offset: 0
a(0) = 1: 000
a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates
a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.
-
A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z,'even') then m := max( abs(x),abs(y),abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n),n=0..40) ; # R. J. Mathar, Feb 03 2010
-
a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2;
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)
I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see
A117216), D_5, ..., E_6, E_7, E_8.
Removed the "conjectured" attribute from formulas -
R. J. Mathar, Feb 27 2010
A317297
a(n) = (n - 1)*(4*n^2 - 8*n + 5).
Original entry on oeis.org
0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1
Nonzero terms give the row sums of
A007607.
Conjecture: 0 together with a bisection of
A246697.
-
Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
-
a(n) = (n - 1)*(4*n^2 - 8*n + 5)
-
concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018
A343641
X-coordinate of points following the 3D square spiral defined in A343640.
Original entry on oeis.org
0, 0, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 0, 0, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0
Offset: 0
Cf.
A343631 (variant using the Euclidean norm),
A342561 (another variant).
Cf.
A010014 (number of points on a shell with given radius => row lengths).
A343642
Y-coordinate of points following the 3D square spiral defined in A343640.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 0, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 1, 0
Offset: 0
Cf.
A343632 (variant using the Euclidean norm),
A342562 (another variant).
Cf.
A010014 (number of points on a shell with given radius => row lengths).
Showing 1-10 of 11 results.
Comments