cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A117216 Number of points in the standard root system version of the D_4 lattice having L_infinity norm n.

Original entry on oeis.org

1, 40, 272, 888, 2080, 4040, 6960, 11032, 16448, 23400, 32080, 42680, 55392, 70408, 87920, 108120, 131200, 157352, 186768, 219640, 256160, 296520, 340912, 389528, 442560, 500200, 562640, 630072, 702688, 780680, 864240, 953560, 1048832, 1150248, 1258000, 1372280
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2008

Keywords

Comments

This lattice consists of all points (w,x,y,z) where w,x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
Equals binomial transform of [1, 39, 193, 191, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Feb 05 2010

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.

Crossrefs

Programs

  • Magma
    I:=[1, 40, 272, 888, 2080]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
  • Mathematica
    CoefficientList[Series[(1+36*x+118*x^2+36*x^3+x^4)/(1-x)^4,{x,0,40}],x]  (* Vincenzo Librandi, Jun 27 2012 *)

Formula

From R. J. Mathar, Feb 03 2010, Feb 13 2010: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>4;
a(n) = 8*n*(1+4*n^2) = 2*A144965(n), n>0 (bisection of A035878 and A105374). (End)
G.f.: (1 + 36*x + 118*x^2 + 36*x^3 + x^4)/(1-x)^4. - Colin Barker, May 24 2012
E.g.f.: 1 + 8*x*(1 + 2*x)*(5 + 2*x)*exp(x). - Elmo R. Oliveira, Aug 18 2025

Extensions

a(2) corrected and sequence extended by R. J. Mathar, Feb 03 2010, Feb 13 2010

A175112 First differences of A175111.

Original entry on oeis.org

1, 120, 1442, 6840, 21122, 51000, 105122, 194040, 330242, 528120, 804002, 1176120, 1664642, 2291640, 3081122, 4059000, 5253122, 6693240, 8411042, 10440120, 12816002, 15576120, 18759842, 22408440, 26565122, 31275000, 36585122
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Convolution of the finite sequence 1,116,967,1672,967,116,1 with A001752. Number of points in the standard root system of the D_5 lattice having L_oo norm n.

Crossrefs

Programs

  • Magma
    I:=[1, 120, 1442, 6840, 21122, 51000, 105122]; [n le 7 select I[n] else 4*Self(n-1) - 5*Self(n-2) + 5*Self(n-4) - 4*Self(n-5) + Self(n-6): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
  • Mathematica
    CoefficientList[Series[(116*x + 967*x^2 + 1672*x^3 + 967*x^4 + 116*x^5 + x^6+1)/((1 + x)*(1 - x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
    LinearRecurrence[{4,-5,0,5,-4,1},{1,120,1442,6840,21122,51000,105122},30] (* Harvey P. Dale, Sep 12 2023 *)

Formula

a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6), n>6.
a(n) = ((2*n+1)^5-(2*n-1)^5)/2+(-1)^n, n>0.
G.f.: (116*x+967*x^2+1672*x^3+967*x^4+116*x^5+x^6+1)/((1+x)*(1-x)^5).

A175114 First differences of A175113.

Original entry on oeis.org

1, 364, 7448, 51012, 206896, 620060, 1527624, 3281908, 6373472, 11454156, 19360120, 31134884, 48052368, 71639932, 103701416, 146340180, 201982144, 273398828, 363730392, 476508676, 615680240, 785629404, 991201288, 1237724852
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Convolution of the finite sequence 1,358,5279,11764,5279,358,1 with A000389. Number of points in the standard root system of the D_6 lattice having L_infinity norm n.

Crossrefs

Programs

  • Magma
    I:=[1,364,7448,51012,206896,620060,1527624]; [n le 7 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012
  • Mathematica
    CoefficientList[Series[(358 x + 5279 x^2 + 11764 x^3 + 5279 x^4 + 358 x^5 + 1+x^6)/(x - 1)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)

Formula

a(n)= 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6), n>6.
a(n) = ((2*n+1)^6-(2*n-1)^6)/2 = 4*n*(12*n^2+1)*(4*n^2+3), n>0. - Bruno Berselli, Dec 27 2010
G.f.: (358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+1+x^6)/(x-1)^6. - R. J. Mathar, Jan 03 2011

A175109 a(n) = ((2*n+1)^3+(-1)^n)/2.

Original entry on oeis.org

1, 13, 63, 171, 365, 665, 1099, 1687, 2457, 3429, 4631, 6083, 7813, 9841, 12195, 14895, 17969, 21437, 25327, 29659, 34461, 39753, 45563, 51911, 58825, 66325, 74439, 83187, 92597, 102689, 113491, 125023, 137313, 150381, 164255, 178955
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Partial sums of A110907. Convolution of the finite sequence (1,10,26,10,1) with A002623.

Crossrefs

Programs

  • Magma
    I:=[1, 13, 63, 171, 365]; [n le 5 select I[n] else 3*Self(n-1) - 2*Self(n-2) - 2*Self(n-3) + 3*Self(n-4) - Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
  • Maple
    A175109:=n->((2*n+1)^3+(-1)^n)/2: seq(A175109(n), n=0..50); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    CoefficientList[Series[(x^2 + 4*x + 1)*(x^2 + 6*x + 1)/((1 + x)*(x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
G.f.: (x^2+4*x+1)*(x^2+6*x+1)/((1+x)*(x-1)^4).

A175197 Array A(k,n) of the number of points of the A_k lattice with maximum infinity norm n, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 18, 12, 2, 0, 1, 50, 66, 18, 2, 0, 1, 140, 330, 146, 24, 2, 0, 1, 392, 1610, 1070, 258, 30, 2, 0, 1, 1106, 7742, 7580, 2500, 402, 36, 2, 0, 1, 3138, 37058, 52556, 23330, 4850, 578, 42, 2, 0, 1, 8952, 177186, 360402, 212436, 56252, 8350, 786
Offset: 0

Views

Author

R. J. Mathar, Mar 02 2010

Keywords

Comments

The values are computed starting with an auxiliary array which places the centered trinomial numbers A002426, the centered pentanomial numbers A005191, the centered 7-nomial numbers A025012 etc. into separate columns:
.1,....1,......1,.......1,........1,........1,.........1,.........1,.........1
.1,....3,......5,.......7,........9,.......11,........13,........15,........17
.1,....7,.....19,......37,.......61,.......91,.......127,.......169,.......217
.1,...19,.....85,.....231,......489,......891,......1469,......2255,......3281
.1,...51,....381,....1451,.....3951,.....8801,.....17151,.....30381,.....50101
.1,..141,...1751,....9331,....32661,....88913,....204763,....418503,....782153
.1,..393,...8135,...60691,...273127,...908755,...2473325,...5832765,..12354469
.1,.1107,..38165,..398567,..2306025,..9377467,..30162301,..82073295,.197018321
.1,.3139,.180325,.2636263,.19610233,.97464799,.370487485,1163205475,3164588407
This is a subarray of A077042. Rows are A005408, A003215, A063496, A083669 (see A077044) etc. The array A(k,n) is the first differences along each row of this auxiliary array.

Examples

			A(k,n) starts in row k=0, column n=0 as:
1,....0,......0,.......0,........0,........0,.........0,.........0,.........0
1,....2,......2,.......2,........2,........2,.........2,.........2,.........2
1,....6,.....12,......18,.......24,.......30,........36,........42,........48
1,...18,.....66,.....146,......258,......402,.......578,.......786,......1026
1,...50,....330,....1070,.....2500,.....4850,......8350,.....13230,.....19720
1,..140,...1610,....7580,....23330,....56252,....115850,....213740,....363650
1,..392,...7742,...52556,...212436,...635628,...1564570,...3359440,...6521704
1,.1106,..37058,..360402,..1907458,..7071442,..20784834,..51910994,.114945026
1,.3138,.177186,.2455938,.16973970,.77854566,.273022686,.792717990,2001382932
		

Crossrefs

Cf. A008458 (row k=2), A010006 (row k=3), A110907.
Showing 1-5 of 5 results.