Original entry on oeis.org
0, 20, 100, 280, 600, 1100, 1820, 2800, 4080, 5700, 7700, 10120, 13000, 16380, 20300, 24800, 29920, 35700, 42180, 49400, 57400, 66220, 75900, 86480, 98000, 110500, 124020, 138600, 154280, 171100, 189100, 208320, 228800, 250580, 273700
Offset: 0
-
A016755:=func< n | (2*n+1)^3 >; A001845:=func< n | (2*n+1)*(2*n^2+2*n+3)/3 >; [ A016755(n)-A001845(n): n in [0..40] ]; // Klaus Brockhaus, Mar 20 2011
-
(10/3)*n*(n+1)*(2*n+1)
-
10n(n+1)(2n+1)/3
LinearRecurrence[{4,-6,4,-1},{0,20,100,280},40] (* Harvey P. Dale, Jul 18 2016 *)
A006331
a(n) = n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Rowan Beckworth, Basic atomic information.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
- N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
- JBMO 2025, 29th Junior Balkan Mathematical Olympiad, Problem 4, author: Boris Mihov
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
-
[n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
-
Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
-
a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
A233091
Decimal expansion of Sum_{i>=0} 1/(2*i+1)^3.
Original entry on oeis.org
1, 0, 5, 1, 7, 9, 9, 7, 9, 0, 2, 6, 4, 6, 4, 4, 9, 9, 9, 7, 2, 4, 7, 7, 0, 8, 9, 1, 3, 2, 2, 5, 1, 8, 7, 4, 1, 9, 1, 9, 3, 6, 3, 0, 0, 5, 7, 9, 7, 9, 3, 6, 5, 2, 1, 5, 6, 8, 2, 3, 7, 6, 1, 0, 9, 2, 4, 1, 0, 8, 4, 3, 0, 0, 6, 3, 0, 2, 3, 9, 5, 3, 9, 1, 3, 1
Offset: 1
1.0517997902646449997247708913225187419193630057979365215682376109241...
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.
- J. M. Borwein, I.J. Zucker, and J. Boersma, The evaluation of character Euler double sums, The Ramanujan Journal, April 2008, Volume 15, Issue 3, pp 377-405, see p. 17 c(3).
- R. J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, Table 22.
Cf.
A153071: sum( i >= 0, (-1)^i/(2*i+1)^3 ).
Cf.
A251809: sum( i >= 0, (-1)^floor(i/2)/(2*i+1)^3 ).
-
RealDigits[7 Zeta[3]/8, 10, 90][[1]]
-
7*zeta(3)/8 \\ Stefano Spezia, Oct 31 2024
A002593
a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
Original entry on oeis.org
0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081
Offset: 0
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955. [Annotated scans of just pages 742-743]
- Neslihan Kilar, Abdelmejid Bayad, and Yilmaz Simsek, Finite sums involving trigonometric functions and special polynomials: analysis of generating functions and p-adic integrals, Appl. Anal. Disc. Math., hal-04535748, 2024. See p. 22.
- Vladimir Pletser, File Triplets (M,a,c) for M=2n^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- G. Xiao, Sigma Server, Operate on "(2*n-1)^3".
- M. J. Zerger, Proof without words: The sum of consecutive odd cubes is a triangular number, Math. Mag., 68 (1995), 371.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50); # Vladimir Pletser, Jan 10 2015
-
CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5,{x,0, 80}],x] (* or *)
Table[ n^2 (2n^2-1),{n,0,80}] (* Harvey P. Dale, Mar 28 2011 *)
Join[{0},Accumulate[Range[1,91,2]^3]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,28,153,496},40] (* Harvey P. Dale, Mar 22 2017 *)
-
a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017
A016947
a(n) = (6*n + 3)^3.
Original entry on oeis.org
27, 729, 3375, 9261, 19683, 35937, 59319, 91125, 132651, 185193, 250047, 328509, 421875, 531441, 658503, 804357, 970299, 1157625, 1367631, 1601613, 1860867, 2146689, 2460375, 2803221, 3176523, 3581577, 4019679, 4492125, 5000211, 5545233, 6128487, 6751269
Offset: 0
a(0) = (6*0 + 3)^3 = 3^3 = 27.
-
[(6*n+3)^3: n in [0..50]]; // Vincenzo Librandi, May 05 2011
-
Table[(6*n + 3)^3, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *)
LinearRecurrence[{4,-6,4,-1},{27,729,3375,9261},40] (* Harvey P. Dale, Jul 02 2025 *)
A016743
Even cubes: a(n) = (2*n)^3.
Original entry on oeis.org
0, 8, 64, 216, 512, 1000, 1728, 2744, 4096, 5832, 8000, 10648, 13824, 17576, 21952, 27000, 32768, 39304, 46656, 54872, 64000, 74088, 85184, 97336, 110592, 125000, 140608, 157464, 175616, 195112, 216000, 238328, 262144, 287496, 314432
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Hilko Koning, 216 neodymium magnets for n=3.
- Ana Rechtman, Mars 2022, 1er défi, Images des Mathématiques, CNRS, 2022 (in French).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
A016756
a(n) = (2*n+1)^4.
Original entry on oeis.org
1, 81, 625, 2401, 6561, 14641, 28561, 50625, 83521, 130321, 194481, 279841, 390625, 531441, 707281, 923521, 1185921, 1500625, 1874161, 2313441, 2825761, 3418801, 4100625, 4879681, 5764801, 6765201, 7890481, 9150625, 10556001, 12117361, 13845841, 15752961, 17850625
Offset: 0
a(1) = 81 because there are 9 lattice points in or on the 2 x 2 square centered at the origin, so there are 9*9 =81 ordered pairs. - _Geoffrey Critzer_, Apr 20 2013
-
[(2*n+1)^4: n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
-
Table[(2n+1)^4,{n,0,25}] (* Geoffrey Critzer, Apr 20 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,81,625,2401,6561},30] (* Harvey P. Dale, Mar 24 2020 *)
-
vector(40, n, n--; (2*n+1)^4) \\ G. C. Greubel, Sep 15 2018
A343640
Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D square spiral filling space with shells of increasing radius for the sup-norm, in turn filled by squares extending from one pole to the opposite one.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, -1, 1, 1, -1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 1, -1, -1, 0, -1, -1, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 0, 0, -2, 1, 0, -2, 1, 1, -2, 0, 1, -2, -1, 1, -2, -1, 0, -2, -1, -1, -2, 0, -1, -2, 1, -1, -2
Offset: 0
Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 3*3 + 4*2 + 3*3 = 26 points with oo-norm 1, i.e., all points with coordinates within {-1, 0, 1} except for the origin. They are listed in a square spiral starting at the North Pole: (0,0,1), (1,0,1), (1,1,1), (0,1,1), (-1,1,1), (-1,0,1), (-1,-1,1), (0,-1,1), (1,-1,1); then on the equator: (1,0,0), (1,1,0), (0,1,0), (-1,1,0), (-1,0,0), (-1,-1,0), (0,-1,0), (1,-1,0), and then on the South face using an inward spiral: (1,0,-1), (1,1,-1), (0,1,-1), (-1,1,-1), (-1,0,-1), (-1,-1,-1), (0,-1,-1), (1,-1,-1), (0,0,-1).
Since there are no empty shells, the z-coordinate is always increasing for even r and decreasing for odd r.
-
A343640_row(n)={local(L=List(), a(r, z, d=I)= if(r, for(i=1,8*r, listput(L,[real(r),imag(r),z]); r+=d; abs(real(r))==abs(imag(r)) && d*=I), listput(L,[0,0,z])), s=(-1)^n /* flip South <-> North for odd n */); /* main prog: (1) square spiral on South face from center to board */ for(d=!n,n, a(d,-s*n)); /* (2) "equatorial(?) bands" from South to North */ for(z=1-n,n-1, a(n,s*z)); /* (3) square spiral on North face ending in pole */ for(d=0,n, a(n-d,s*n)); Vec(L)} \\ row n of the table = list of points (x,y,z) in the shell n, i.e., with sup norm n. [Missing "s*" in a(n,s*z) added on May 27 2021]
A343640_vec=concat([A343640_row(r) | r<-[0..2]]) \\ From r=0 up to n there are (2n+1)^3 points with 3 coordinates each!
A046142
Haüy rhombic dodecahedral numbers.
Original entry on oeis.org
1, 33, 185, 553, 1233, 2321, 3913, 6105, 8993, 12673, 17241, 22793, 29425, 37233, 46313, 56761, 68673, 82145, 97273, 114153, 132881, 153553, 176265, 201113, 228193, 257601, 289433, 323785, 360753, 400433, 442921, 488313, 536705, 588193, 642873, 700841
Offset: 1
- H. Steinhaus, Mathematical Snapshots, 3rd ed. New York: Dover, pp. 185-186, 1999.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- R.-J. Haüy, Essai d'une théorie sur la structure des crystaux appliquée à plusieurs genres de substances crystallisées, 1784.
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000 which lists Haüy rhombic dodecahedral numbers as "RhoDod(n)."
- Eric Weisstein's World of Mathematics, Haüy Construction.
- Eric Weisstein's World of Mathematics, Rhombic Dodecahedral Number.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[(2*n-1)*(8*n^2-14*n+7): n in [1..40]]; // Vincenzo Librandi, Mar 29 2015
-
A046142:=n->(2*n-1)*(8*n^2-14*n+7): seq(A046142(n), n=1..50); # Wesley Ivan Hurt, Mar 02 2016
-
Table[(2 n - 1) (8 n^2 - 14 n + 7), {n, 40}] (* Vincenzo Librandi, Mar 29 2015 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 33, 185, 553}, 20] (* Eric W. Weisstein, Sep 27 2017 *)
CoefficientList[Series[(1 + 29 x + 59 x^2 + 7 x^3)/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
-
Vec(x*(7*x^3+59*x^2+29*x+1)/(x-1)^4 + O(x^50)) \\ Michel Marcus, Mar 24 2015
A309337
a(n) = n^3 if n odd, 3*n^3/4 if n even.
Original entry on oeis.org
0, 1, 6, 27, 48, 125, 162, 343, 384, 729, 750, 1331, 1296, 2197, 2058, 3375, 3072, 4913, 4374, 6859, 6000, 9261, 7986, 12167, 10368, 15625, 13182, 19683, 16464, 24389, 20250, 29791, 24576, 35937, 29478, 42875, 34992, 50653, 41154, 59319, 48000, 68921, 55566, 79507, 63888, 91125
Offset: 0
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
-
a[n_] := If[OddQ[n], n^3, 3 n^3/4]; Table[a[n], {n, 0, 45}]
nmax = 45; CoefficientList[Series[x (1 + 6 x + 23 x^2 + 24 x^3 + 23 x^4 + 6 x^5 + x^6)/(1 - x^2)^4, {x, 0, nmax}], x]
LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 6, 27, 48, 125, 162, 343}, 46]
Table[n^3 (7 - (-1)^n)/8, {n, 0, 45}]
Showing 1-10 of 31 results.
Comments