cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A000035 Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Least significant bit of n, lsb(n).
Also decimal expansion of 1/99.
Also the binary expansion of 1/3. - Robert G. Wilson v, Sep 01 2015
a(n) = A134451(n) mod 2. - Reinhard Zumkeller, Oct 27 2007 [Corrected by Jianing Song, Nov 22 2019]
Characteristic function of odd numbers: a(A005408(n)) = 1, a(A005843(n)) = 0. - Reinhard Zumkeller, Sep 29 2008
A102370(n) modulo 2. - Philippe Deléham, Apr 04 2009
Base b expansion of 1/(b^2-1) for any b >= 2 is 0.0101... (A005563 has b^2-1). - Rick L. Shepherd, Sep 27 2009
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i] := 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,1). - Milan Janjic, Jan 24 2010
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character of the reduced residue system mod 2 or mod 4 or mod 8 or mod 16 ...
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 == A111003,
or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.05179979... = 7*A002117/8,
or L(4,chi) = Sum_{n>=1} a(n)/n^4 = 1.014678... = A092425/96. (End)
Also parity of the nonnegative integers A001477. - Omar E. Pol, Jan 17 2012
a(n) = (4/n), where (k/n) is the Kronecker symbol. See the Eric Weisstein link. - Wolfdieter Lang, May 28 2013
Also the inverse binomial transform of A131577. - Paul Curtz, Nov 16 2016 [an observation forwarded by Jean-François Alcover]
The emanation sequence for the globe category. That is take the globe category, take the corresponding polynomial comonad, consider its carrier polynomial as a generating function, and take the corresponding sequence. - David Spivak, Sep 25 2020
For n > 0, a(n) is the alternating sum of the product of n increasing and n decreasing odd factors. For example, a(4) = 1*7 - 3*5 + 5*3 - 7*1 and a(5) = 1*9 - 3*7 + 5*5 - 7*3 + 9*1. - Charlie Marion, Mar 24 2022

Examples

			G.f. = x + x^3 + x^5 + x^7 + x^9 + x^11 + x^13 + x^15 + ... - _Michael Somos_, Feb 20 2024
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ones complement of A059841.
Cf. A053644 for most significant bit.
This is Guy Steele's sequence GS(1, 2) (see A135416).
Period k zigzag sequences: this sequence (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A154955 (Mobius transform), A131577 (binomial transform).
Cf. A111003 (Dgf at s=2), A233091 (Dgf at s=3), A300707 (Dgf at s=4).
Parity of A005811.

Programs

Formula

a(n) = (1 - (-1)^n)/2.
a(n) = n mod 2.
a(n) = 1 - a(n-1).
Multiplicative with a(p^e) = p mod 2. - David W. Wilson, Aug 01 2001
G.f.: x/(1-x^2). E.g.f.: sinh(x). - Paul Barry, Mar 11 2003
a(n) = (A000051(n) - A014551(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2003
a(n) = ceiling((-2)^(-n-1)). - Reinhard Zumkeller, Apr 19 2005
Dirichlet g.f.: (1-1/2^s)*zeta(s). - R. J. Mathar, Mar 04 2011
a(n) = ceiling(n/2) - floor(n/2). - Arkadiusz Wesolowski, Sep 16 2012
a(n) = ceiling( cos(Pi*(n-1))/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = floor((n-1)/2) - floor((n-2)/2). - Mikael Aaltonen, Feb 26 2015
Dirichlet g.f.: L(chi(2),s) with chi(2) the principal Dirichlet character modulo 2. - Ralf Stephan, Mar 27 2015
a(n) = 0^^n = 0^(0^(0...)) (n times), where we take 0^0 to be 1. - Natan Arie Consigli, May 02 2015
Euler transform and inverse Moebius transform of length 2 sequence [0, 1]. - Michael Somos, Feb 20 2024

A002117 Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.

Original entry on oeis.org

1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022

Examples

			1.2020569031595942853997...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 261.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53, 500.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
  • R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
  • Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
  • Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
  • A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
  • Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.

Crossrefs

Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).

Programs

  • Magma
    L:=RiemannZeta(: Precision:=100); Evaluate(L,3); // G. C. Greubel, Aug 21 2018
  • Maple
    # Calculates an approximation with n exact decimal places (small deviation
    # in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
    zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
    for k from 2 by 2 to 7*n/2 do
        w := -w*v/k;
        v := v + 8;
        s := s + 1/(w*k^3);
    od; 20*s; evalf(%, n) end:
    zeta3(10000); # Peter Luschny, Jun 10 2020
  • Mathematica
    RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
    (* Second program (historical interest): *)
    d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
    (* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
  • Maxima
    fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
    
  • Python
    from mpmath import mp, apery
    mp.dps=109
    print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
    

Formula

Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeta(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
Equals 7*Pi^3/180 - 2*Sum_{k>=1} 1/(k^3*(exp(2*Pi*k) - 1)) [Grosswald] (see Finch). - Stefano Spezia, Nov 01 2024
Equals 10*Integral_{x=0..1/2} arcsinh(x)^2/x dx = -5*Integral_{x=0..2*log(phi)} x*log(2*sinh(x/2))dx [Munthe Hjortnaes] (see Finch). - Stefano Spezia, Nov 03 2024
Equals Li_3(1) = Integral_{x=0..1} Li_2(x)/x dx = Integral_{x=0..1} Integral_{y=0..1} Li_1(xy)/xy dydx = Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} Li_0(xyz)/xyz dzdydx (see Beukers), in general Integral_{x_1,...,x_k=0..1} Li_{3-k}(Product_{n=1..k} x_n)/(Product_{n=1..k} x_n) dx_k...dx_1 = zeta(3), for any k > 0. - Miko Labalan, Dec 23 2024
zeta(3) = (1/2)*Sum_{m >= 1}(Sum_{n >= 1} 1/(m*n*(m+n))). - Ricardo Bittencourt, Feb 24 2025
zeta(3) = Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} 1/(1 - x*y*z) dz dy dx. - Kritsada Moomuang, May 22 2025
zeta(3) = Sum_{i, j >= 1} 1/(i^2*j*binomial(i+j, i)) = Sum_{k >= 1} 1/(k + 1)^2 * Sum_{j = 1..k} 1/j = zeta(2, 1) (multiple zeta value due to Euler). - Peter Bala, Aug 05 2025

Extensions

More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017

A153071 Decimal expansion of L(3, chi4), where L(s, chi4) is the Dirichlet L-function for the non-principal character modulo 4.

Original entry on oeis.org

9, 6, 8, 9, 4, 6, 1, 4, 6, 2, 5, 9, 3, 6, 9, 3, 8, 0, 4, 8, 3, 6, 3, 4, 8, 4, 5, 8, 4, 6, 9, 1, 8, 6, 0, 0, 0, 6, 9, 5, 4, 0, 2, 6, 7, 6, 8, 3, 9, 0, 9, 6, 1, 5, 4, 4, 2, 0, 1, 6, 8, 1, 5, 7, 4, 3, 9, 4, 9, 8, 4, 1, 1, 7, 0, 8, 0, 3, 3, 1, 3, 6, 7, 3, 9, 5, 9, 4, 0, 7
Offset: 0

Views

Author

Stuart Clary, Dec 17 2008

Keywords

Examples

			L(3, chi4) = Pi^3/32 = 0.9689461462593693804836348458469186...
		

References

  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, 1989. See page 293, Entry 25 (iii).
  • Leonhard Euler, Introductio in Analysin Infinitorum, First Part, Articles 175, 284 and 287.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.1, p. 20.

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).

Programs

  • Mathematica
    nmax = 1000; First[ RealDigits[Pi^3/32, 10, nmax] ]
  • PARI
    Pi^3/32 \\ Michel Marcus, Aug 15 2018

Formula

chi4(k) = Kronecker(-4, k); chi4(k) is 0, 1, 0, -1 when k reduced modulo 4 is 0, 1, 2, 3, respectively; chi4 is A101455.
Series: L(3, chi4) = Sum_{k>=1} chi4(k) k^{-3} = 1 - 1/3^3 + 1/5^3 - 1/7^3 + 1/9^3 - 1/11^3 + 1/13^3 - 1/15^3 + ...
Series: L(3, chi4) = Sum_{k>=0} tanh((2k+1) Pi/2)/(2k+1)^3. [Ramanujan; see Berndt, page 293]
Closed form: L(3, chi4) = Pi^3/32 = 1/A331095.
Equals Sum_{n>=0} (-1)^n/(2*n+1)^3. - Jean-François Alcover, Mar 29 2013
Equals Product_{k>=3} (1 - tan(Pi/2^k)^4) (Groenman, 1990). - Amiram Eldar, Apr 03 2022
Equals Integral_{x=0..1} arcsinh(x)*arccos(x)/x dx (Kobayashi, 2021). - Amiram Eldar, Jun 23 2023
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(3), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p^3)^(-1). (End)

Extensions

Offset corrected by R. J. Mathar, Feb 05 2009

A197070 Decimal expansion of the Dirichlet eta-function at 3.

Original entry on oeis.org

9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
Offset: 0

Views

Author

R. J. Mathar, Oct 09 2011

Keywords

Comments

This constant is irrational by Apéry's theorem. - Charles R Greathouse IV, Feb 11 2024

Examples

			0.9015426773696957140498036211335874930737...
		

Crossrefs

Cf. A002117 (zeta(3)), A058312, A058313, A072691, A136675, A233090 (5*zeta(3)/8), A233091 (7*zeta(3)/8), A334582.

Programs

Formula

Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Lim_{n -> infinity} A136675(n)/A334582(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024

A087003 a(2n) = 0 and a(2n+1) = mu(2n+1); also the sum of Mobius function values computed for terms of 3x+1 trajectory started at n, provided that Collatz conjecture is true.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1
Offset: 1

Views

Author

Labos Elemer, Oct 02 2003

Keywords

Comments

Observe that (these summatory) terms are from {-1,0,1}, so behave like Mobius function values, not like Mertens function values. Moreover, empirically: a(n) deviates from mu(initial-value) = mu(n) only if iv = n is an even squarefree number (i.e., it is from A039956). - This comment, like also the next one, concerns the original Collatz-related definition of this sequence. - Antti Karttunen, Sep 18 2017
From Marc LeBrun, Feb 19 2004: (Start)
Absolute values are the same as those of A091069. First consider the descending parts of Collatz (or 3x+1) trajectories, those that begin with even numbers 2^p k, with k odd. These go 2^p*k, 2^(p-1)*k, ... 2k, k. All but 2k and k are divisible by 4, a (rational) square, hence their mu values are all 0 and so they contribute nothing to the sum.
Then at the end, since mu(2k) = -mu(k), the last two steps cancel each other out. So every descending chain in a trajectory contributes 0. Of course the full trajectory of every even number consists entirely of descending chains, so A087003 is 0 for all even n.
On the other hand, the trajectory of every odd number consists of just that number followed by the trajectory of an even number (which contributes nothing) so A087003 is indeed equal to mu(n) for odd n.
(End)
The sequence is multiplicative; it may be defined as the Dirichlet inverse of the integers modulo 2 (A000035). - Gerard P. Michon, Apr 29 2007
a(n) appears in the second column of A156241 at every second row. - Mats Granvik, Feb 07 2009

Crossrefs

Cf. A000035 (the Dirichlet inverse), A318657/A318658 (the "Dirichlet Square Root").

Programs

  • Mathematica
    c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] lf[x_] := Length[fpl[x]] Table[Apply[Plus, Table[MoebiusMu[Part[fpl[w], j]], {j, 1, lf[w]}]], {w, 1, 256}]
    Riffle[MoebiusMu[Range[1,121,2]],0] (* Harvey P. Dale, Jan 24 2025 *)
  • PARI
    A006370(n) = if(n%2, 3*n+1, n/2); \\ This function from Michael B. Porter, May 29 2010
    A087003(n) = { my(s=1); while(n>1, s += moebius(n); n = A006370(n)); (s); }; \\ Antti Karttunen, Sep 14 2017
    
  • PARI
    a(n)={sumdiv(n, d,  my(e=valuation(d, 2)); if(d==1<Andrew Howroyd, Aug 04 2018
    
  • PARI
    A087003(n) = ((n%2)*moebius(n)); \\ Antti Karttunen, Sep 01 2018

Formula

a(n) = A008683(n) + A292273(n). - Antti Karttunen, Sep 14 2017
Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
From Jianing Song, Aug 04 2018: (Start)
Multiplicative with a(2^e) = 0, a(p^e) = (-1 + (-1)^e)/2 for odd primes p.
Dirichlet g.f.: 1/((1 - 2^(-s))*zeta(s)).
(End)
From Antti Karttunen, Sep 01 2018: (Start)
a(n) = A000035(n)*A008683(n).
Dirichlet convolution of A318657/A046644 with itself.
(End)
Sum_{n>=1} a(n)/n^2 = A217739 . Sum_{n>=1} a(n)/n^3 = A233091. Sum_{n>=1} a(n)/n^4 = A300707. - R. J. Mathar, Dec 17 2024

Extensions

a(2n) = 0, a(2n+1) = mu(2n+1) added to the name as the new primary definition by Antti Karttunen, Sep 18 2017

A233090 Decimal expansion of Sum_{n>=1} (-1)^(n-1)*H(n)/n^2, where H(n) is the n-th harmonic number.

Original entry on oeis.org

7, 5, 1, 2, 8, 5, 5, 6, 4, 4, 7, 4, 7, 4, 6, 4, 2, 8, 3, 7, 4, 8, 3, 6, 3, 5, 0, 9, 4, 4, 6, 5, 6, 2, 4, 4, 2, 2, 8, 1, 1, 6, 4, 3, 2, 7, 1, 2, 8, 1, 1, 8, 0, 1, 1, 2, 0, 1, 6, 9, 7, 2, 2, 0, 8, 8, 6, 4, 8, 8, 7, 8, 6, 1, 6, 4, 4, 5, 6, 8, 1, 3, 6, 6, 5, 3, 4, 9, 2, 1, 0, 0, 5, 8, 3, 4, 5, 3, 6, 3
Offset: 0

Views

Author

Jean-François Alcover, Dec 04 2013, after the comment by Peter Bala about A233033

Keywords

Examples

			0.7512855644747464283748363509446562442281164327128118011201697220886...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.

Crossrefs

Cf. A002117 (zeta(3)), A197070 (3*zeta(3)/4), A233091 (7*zeta(3)/8), A076788 (alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3), A233033 (alternating sum with denominator n^3).

Programs

  • Mathematica
    RealDigits[ 5*Zeta[3]/8, 10, 100] // First

Formula

Equals 5*zeta(3)/8.
Equals -Integral_{x=0..1} (log(1+x)*log(1-x)/x)*dx. - Amiram Eldar, May 06 2023
Equals Sum_{m>=1} Sum_{n>=1} (-1)^(m-1)/(m*n*(m + n)) (see Finch). - Stefano Spezia, Nov 02 2024

A251809 Decimal expansion of 3*sqrt(2)*Pi^3/128.

Original entry on oeis.org

1, 0, 2, 7, 7, 2, 2, 5, 8, 5, 9, 3, 6, 8, 5, 8, 5, 6, 7, 8, 7, 9, 2, 5, 6, 6, 1, 8, 0, 0, 2, 2, 5, 5, 7, 6, 7, 2, 1, 0, 1, 0, 0, 3, 1, 8, 5, 3, 6, 9, 9, 7, 4, 6, 5, 3, 3, 1, 0, 8, 4, 7, 5, 5, 1, 8, 5, 2, 5, 7, 7, 7, 2, 4, 6, 8, 5, 8, 4, 9, 6, 8, 0, 3, 5, 1
Offset: 1

Views

Author

Bruno Berselli, Dec 10 2014

Keywords

Comments

Equals the value of the Dirichlet L-series of the non-principal character modulo 8 (A188510) at s=3. - Jianing Song, Nov 16 2019

Examples

			1.027722585936858567879256618002255767210100318536997465331084755185...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 64 (formula 340).

Crossrefs

Cf. A153071: Sum_{i >= 0} (-1)^i/(2i+1)^3.
Cf. A233091: Sum_{i >= 0} 1/(2i+1)^3.

Programs

  • Magma
    R:= RealField(); 3*Sqrt(2)*Pi(R)^3/128; // G. C. Greubel, Jul 27 2018
  • Mathematica
    RealDigits[3 Sqrt[2] Pi^3/128, 10, 90][[1]]
  • PARI
    3*sqrt(2)*Pi^3/128 \\ G. C. Greubel, Jul 27 2018
    

Formula

Equals Sum_{i >= 0} (-1)^floor(i/2)/(2i+1)^3 = +1 +1/3^3 -1/5^3 -1/7^3 +1/9^3 +1/11^3 - ...
Equals Sum_{i >= 1} A188510(i)/i^3 = Sum_{i >= 1} Kronecker(-8,i)/i^3. - Jianing Song, Nov 16 2019
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^3) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023

A352048 Sum of the squares of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 4, 9, 16, 25, 40, 49, 64, 90, 104, 121, 160, 169, 200, 259, 256, 289, 364, 361, 416, 499, 488, 529, 640, 650, 680, 819, 800, 841, 1040, 961, 1024, 1219, 1160, 1299, 1456, 1369, 1448, 1699, 1664, 1681, 2000, 1849, 1952, 2365, 2120, 2209, 2560, 2450, 2604, 2899, 2720
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^2 * Sum_{d|10, d<10, d odd} 1 / d^2 = 10^2 * (1/1^2 + 1/5^2) = 104.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), this sequence (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^2, d = select(`<`,numtheory:-divisors(m),n))
    end proc:
    map(f, [$1..60]); # Robert Israel, Apr 03 2023
  • Mathematica
    a[n_] := n^2 DivisorSum[n, If[# < n && OddQ[#], 1/#^2, 0]&];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 11 2023 *)
    a[n_] := DivisorSigma[-2, n/2^IntegerExponent[n, 2]] * n^2 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^2*sumdiv(n, d, if ((dMichel Marcus, May 11 2023
    
  • PARI
    a(n) = n^2 * sigma(n >> valuation(n, 2), -2) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^2 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^2 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A050999(n) * A006519(n)^2 - A000035(n).
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = 7*zeta(3)/8 = 1.0517997... (A233091). (End)

A276712 Decimal expansion of zeta(3)/8.

Original entry on oeis.org

1, 5, 0, 2, 5, 7, 1, 1, 2, 8, 9, 4, 9, 4, 9, 2, 8, 5, 6, 7, 4, 9, 6, 7, 2, 7, 0, 1, 8, 8, 9, 3, 1, 2, 4, 8, 8, 4, 5, 6, 2, 3, 2, 8, 6, 5, 4, 2, 5, 6, 2, 3, 6, 0, 2, 2, 4, 0, 3, 3, 9, 4, 4, 4, 1, 7, 7, 2, 9, 7, 7, 5, 7, 2, 3, 2, 8, 9
Offset: 0

Author

Terry D. Grant, Sep 15 2016

Keywords

Examples

			0.150257112894949285674967270188...
		

References

  • James Dodson, The Mathematical Repository Containing Analytical Solutions of Five Hundred Questions: Mostly Selected from Scarce and Valuable Authors, (1748), page 375.

Programs

  • Magma
    SetDefaultRealField(RealField(120)); L:=RiemannZeta();  Evaluate(L,3)/8; // G. C. Greubel, Nov 24 2021
  • Mathematica
    RealDigits[(Zeta[3])/8, 10, 100][[1]]
  • PARI
    zeta(3)/8 \\ Michel Marcus, Sep 16 2016
    
  • Sage
    (zeta(3)/8).n(100)
    

Formula

Equals Sum_{n>=1} 1/(2n)^3 = 1/8 + 1/64 + 1/216 + 1/512 + ...
Equals A002117/8.
zeta(3)/8 + A233091 = Sum_{n>=1} 1/(2n+1)^3 + Sum_{n>=1} 1/(2n)^3 = zeta(3).
Equals Sum_{k>=1} (-1)^(k+1) * H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 22 2020
Equals Integral_{x=0..Pi/4} log(sin(x))*log(cos(x))/(sin(x)*cos(x)) dx (Lord, 2005). - Amiram Eldar, Jun 23 2023
Equals -integral_{x=0..1} log(x) log(1+x)/(1+x). [Barbieri] - R. J. Mathar, Jun 07 2024

A377557 Decimal expansion of 2*Pi^3/(81*sqrt(3)) + 13*zeta(3)/27.

Original entry on oeis.org

1, 0, 2, 0, 7, 8, 0, 0, 4, 4, 4, 3, 3, 3, 6, 3, 1, 0, 2, 8, 2, 3, 2, 5, 4, 7, 3, 9, 9, 0, 3, 9, 8, 1, 8, 2, 5, 3, 5, 3, 4, 1, 0, 9, 3, 7, 5, 1, 9, 0, 6, 9, 6, 6, 9, 7, 3, 5, 7, 2, 0, 7, 5, 2, 5, 3, 9, 1, 4, 6, 5, 9, 9, 2, 6, 5, 6, 2, 7, 1, 5, 5, 4, 4, 9, 8, 0, 6, 7, 2, 0, 3, 4, 2, 6, 7, 6, 1, 3, 7
Offset: 1

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.0207800444333631028232547399039818253534109375...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Programs

  • Mathematica
    RealDigits[2Pi^3/(81Sqrt[3])+13Zeta[3]/27,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(3*k + 1)^3 (see Finch).
Equals -psi''(1/3)/54 (see Shamos).
Equals hypergeom([1/3, 1/3, 1/3, 1], [4/3, 4/3, 4/3], 1). - R. J. Mathar, Jul 14 2025
Showing 1-10 of 21 results. Next