A091954 Number of odd proper divisors of n. That is, the number of odd divisors of n that are less than n.
0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 3, 2, 3, 3, 1, 2, 3, 2, 1, 4, 1, 2, 5, 2, 1, 2, 2, 3, 3, 2, 1, 4, 3, 2, 3, 2, 1, 4, 1, 2, 5, 1, 3, 4, 1, 2, 3, 4, 1, 3, 1, 2, 5, 2, 3, 4, 1, 2, 4, 2, 1, 4, 3, 2, 3, 2, 1, 6, 3, 2, 3, 2, 3, 2, 1, 3, 5, 3, 1, 4, 1, 2, 7, 2, 1, 4, 1, 4
Offset: 1
Examples
The odd divisors of 15 that are less than 15 are 1, 3 and 5. Therefore there are three odd divisors of 15 that are less than 15.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Count[Most[Divisors[#]],?OddQ]&/@Range[100] (* _Harvey P. Dale, Sep 28 2012 *) a[n_] := DivisorSigma[0, n/2^IntegerExponent[n, 2]] - Boole[OddQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 11 2022 *)
-
PARI
A091954(n) = sumdiv(n,d,(d
Antti Karttunen, Oct 04 2017 -
PARI
my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=2, N, x^k/(1-x^(2*k))))) \\ Seiichi Manyama, Jan 23 2021
Formula
From Antti Karttunen, Oct 04 2017: (Start)
a(n) = Sum_{d|n, dA000035(n).
(End)
G.f.: Sum_{k>=2} x^k/(1 - x^(2*k)). - Seiichi Manyama, Jan 23 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 26 2023
Extensions
Corrected and extended by Harvey P. Dale, Sep 28 2012