A300665 Number of n-step paths made by a chess king, starting from the corner of an infinite chessboard, and never revisiting a cell.
1, 3, 15, 75, 391, 2065, 11091, 60215, 330003, 1820869, 10103153, 56313047, 315071801, 1768489771, 9953853677, 56158682949, 317505199769, 1798402412539
Offset: 0
Examples
For n=2, the a(2)=15 paths are: . . 0 . . 0 . . 0 . . 0 2 . 0 . . . | | | |/ \ . 1 . . 1 . . 1-2 . 1 . . 2-1 . . | \ . 2 . . . 2 . . . . . . . . . . . . 0 . . 0 . . 0 . . 0 . . 0 . 2 . \ \ \ \ \ / . . 1 . . 1 . . 1 . . 1-2 . 1 . . / | \ . 2 . . . 2 . . . 2 . . . . . . . . 0 2 . 0-1 . 0-1 . 0-1 . 0-1-2 . \| / | \ . . 1 . 2 . . . 2 . . . 2 . . . . . . . . . . . . . . . . . . . .
Links
- Ricardo Bittencourt, C++ code, GitHubGist.
- Ricardo Bittencourt, Go code, GitHubGist.
- OEIS Wiki: Self-avoiding walks
Crossrefs
Programs
-
Go
(see GitHubGist link)
-
Mathematica
next[x_]:=Map[x + #&, Tuples[{-1, 0, 1}, 2]] valid[s_]:=Select[next[s[[-1]]], 0<=#[[1]] && 0<=#[[2]] && FreeQ[s,#] &] nextpath[p_]:=Outer[Append,{p},valid[p],1] iterate[p_]:=Flatten[Map[nextpath, p], 2] Table[Length[Nest[iterate, {{{0,0}}}, n-1]], {n,1,7}]
Comments