cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A254371 Sum of cubes of the first n even numbers (A016743).

Original entry on oeis.org

0, 8, 72, 288, 800, 1800, 3528, 6272, 10368, 16200, 24200, 34848, 48672, 66248, 88200, 115200, 147968, 187272, 233928, 288800, 352800, 426888, 512072, 609408, 720000, 845000, 985608, 1143072, 1318688, 1513800, 1729800, 1968128, 2230272, 2517768, 2832200, 3175200
Offset: 0

Views

Author

Luciano Ancora, Mar 16 2015

Keywords

Comments

Property: for n >= 2, each (a(n), a(n)+1, a(n)+2) is a triple of consecutive terms that are the sum of two nonzero squares; precisely: a(n) = (n*(n + 1))^2 + (n*(n + 1))^2, a(n)+1 = (n^2+2n)^2 + (n^2-1)^2 and a(n)+2 = (n^2+n+1)^2 + (n^2+n-1)^2 (see Diophante link). - Bernard Schott, Oct 05 2021

Crossrefs

Cf. A000537 (sum of first n cubes); A002593 (sum of first n odd cubes).
Cf. A060300 (2*a(n)).
First bisection of A105636; second bisection of A212892.

Programs

  • GAP
    List([0..35],n->2*(n*(n+1))^2); # Muniru A Asiru, Oct 24 2018
  • Magma
    [2*n^2*(n+1)^2: n in [0..40]]; // Bruno Berselli, Mar 23 2015
    
  • Maple
    A254371:=n->2*n^2*(n + 1)^2: seq(A254371(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[2 n^2 (n+1)^2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 72, 288, 800}, 40]
    Accumulate[Range[0,80,2]^3] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    a(n)=sum(i=0, n, 8*i^3); \\ Michael B. Porter, Mar 16 2015
    

Formula

G.f.: 8*x*(1 + 4*x + x^2)/(1 - x)^5.
a(n) = 2*n^2*(n + 1)^2.
a(n) = 2*A035287(n+1) = 2*A002378(n)^2 = 8*A000217(n)^2. - Bruce J. Nicholson, Apr 23 2017
a(n) = 8*A000537(n). - Michel Marcus, Apr 23 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 - 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - 2*log(2). (End)
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 2*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*A163102(n) = A060300(n)/2. (End)

A016755 Odd cubes: a(n) = (2*n + 1)^3.

Original entry on oeis.org

1, 27, 125, 343, 729, 1331, 2197, 3375, 4913, 6859, 9261, 12167, 15625, 19683, 24389, 29791, 35937, 42875, 50653, 59319, 68921, 79507, 91125, 103823, 117649, 132651, 148877, 166375, 185193, 205379, 226981, 250047, 274625, 300763, 328509, 357911, 389017, 421875
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A010014. - Jani Melik, May 20 2013
Terms end in the repeating sequence 1, 7, 5, 3, 9, ... - Melvin Peralta, Jul 08 2015

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3.

Crossrefs

Programs

Formula

Sum_{n >= 0} 1/a(n) = 7 * zeta(3) / 8.
G.f.: (1+23*x+23*x^2+x^3)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 02 2012
a(n) = A000578(A005408(n)). - Michel Marcus, Jul 09 2015
E.g.f.: exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). See A154537, row n=3. - Wolfdieter Lang, Mar 12 2017
From Bruce J. Nicholson, Dec 08 2019: (Start)
a(n) = 24 * A000330(n) + A005408(n).
a(n) = 2 * A005917(n+1) - A005408(n). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi^3/32 (A153071). - Amiram Eldar, Oct 10 2020
Product_{n>=1} (1 - (-1)^n/a(n)) = (Pi/12)*(1 + sqrt(2)*cosh(sqrt(3)*Pi/4)) (Chamberland and Straub, 2013). - Amiram Eldar, Jan 26 2024

A244725 a(n) = 5*n^3.

Original entry on oeis.org

0, 5, 40, 135, 320, 625, 1080, 1715, 2560, 3645, 5000, 6655, 8640, 10985, 13720, 16875, 20480, 24565, 29160, 34295, 40000, 46305, 53240, 60835, 69120, 78125, 87880, 98415, 109760, 121945, 135000, 148955, 163840, 179685, 196520, 214375, 233280, 253265
Offset: 0

Views

Author

Vincenzo Librandi, Jul 05 2014

Keywords

Crossrefs

Cf. similar sequences of the type k*n^3: A000578 (k=1), A033431 (k=2), A117642 (k=3), A033430 (k=4), this sequence (k=5), A244726 (k=6), A244727 (k=7), A016743 (k=8), A244728 (k=9), A244729 (k=10), A016767 (k=27), A016803 (k=64), A016851 (k=125), A016911 (k=216), A016983 (k=343), A017067 (k=512), A017163 (k=729), A017271 (k=1000), A017391 (k=1331), A017523 (k=1728).

Programs

  • Magma
    [5*n^3: n in [0..40]];
    
  • Magma
    I:=[0,5,40,135]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[5 n^3, {n, 0, 40}] (* or *) CoefficientList[Series[5 x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 40}], x]
  • PARI
    a(n)=5*n^3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(1 + 4*x + x^2)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.

A164897 a(n) = 4*n*(n+1) + 3.

Original entry on oeis.org

3, 11, 27, 51, 83, 123, 171, 227, 291, 363, 443, 531, 627, 731, 843, 963, 1091, 1227, 1371, 1523, 1683, 1851, 2027, 2211, 2403, 2603, 2811, 3027, 3251, 3483, 3723, 3971, 4227, 4491, 4763, 5043, 5331, 5627, 5931, 6243, 6563, 6891, 7227, 7571, 7923, 8283, 8651, 9027, 9411
Offset: 0

Views

Author

Paul Curtz, Aug 30 2009

Keywords

Comments

One-fourth the sum of the three terms produced by the division of complex numbers (2*n-3+(2*n-1)*i)/(2*n+1+(2*n+3)*i). For (b+c*i)/(d+e*i) the three terms in parentheses are ((b*d+c*e)+(c*d-b*e)*i)/(d^2+e^2). By substituting b=2*n-3, c=2*n-1, d=2*n+1, and e=2*n+3 one gets a(n). - J. M. Bergot, Sep 10 2015
The continued fraction expansion of sqrt(a(n)) is [2n+1; {2n+1, 4n+2}]. - Magus K. Chu, Sep 08 2022

Crossrefs

Odd-indexed terms of A059100.

Programs

Formula

a(n) = A000124(2*n) + A000124(2*n+1) = A069894(n)+1.
a(n+1) - a(n) = 8n+8 = A008590(n+1) (first differences).
a(n+1) - 2*a(n) + a(n-1) = 8 = A010731(n) (second differences).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>2.
G.f.: (3+2*x+3*x^2) / (1-x)^3.
Sum_{k=n+1..2*n+1} a(k) - Sum_{k=0..n} a(k) = (2*n+2)^3. - Bruno Berselli, Jan 24 2011
E.g.f.: (4x^2 + 8x + 1)*exp(x). - G. C. Greubel, Sep 22 2015
a(n)^2 = A222465(n)*A222465(n+1) - 12. - Ezhilarasu Velayutham, Mar 18 2020
Sum_{n>=0} 1/a(n) = tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022
a(n) = A059100(2*n+1). - Dimitri Papadopoulos, Nov 21 2023

Extensions

Definition simplified by R. J. Mathar, Sep 16 2009

A016827 a(n) = (4n+2)^3.

Original entry on oeis.org

8, 216, 1000, 2744, 5832, 10648, 17576, 27000, 39304, 54872, 74088, 97336, 125000, 157464, 195112, 238328, 287496, 343000, 405224, 474552, 551368, 636056, 729000, 830584, 941192, 1061208, 1191016
Offset: 0

Views

Author

Keywords

Crossrefs

Odd bisection of A016743.
Subsequence of A000578.

Programs

Formula

G.f.: 8*(1 + 23*x + 23*x^2 + x^3)/(1 - x)^4. - Ilya Gutkovskiy, Jun 21 2016
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=0} 1/a(n) = 7*zeta(3)/64.
Sum_{n>=0} (-1)^n/a(n) = Pi^3/256. (End)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Mar 08 2022

A331988 Table T(n,k) read by antidiagonals. T(n,k) is the maximum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}.

Original entry on oeis.org

1, 2, 2, 6, 9, 3, 24, 64, 20, 4, 120, 625, 216, 36, 5, 720, 7776, 3136, 512, 56, 6, 5040, 117649, 59049, 10000, 1000, 81, 7, 40320, 2097152, 1331000, 248832, 24336, 1728, 110, 8, 362880, 43046721, 35831808, 7529536, 759375, 50625, 2744, 144, 9, 3628800, 1000000000, 1097199376, 268435456, 28652616, 1889568, 93636, 4096, 182, 10
Offset: 1

Views

Author

Chai Wah Wu, Feb 23 2020

Keywords

Comments

A dual sequence to A260355. See arXiv link for sets of permutations that achieve the value of T(n,k). The minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] is equal to n!*k^n.

Examples

			T(n,k)
   k    1    2     3      4      5      6      7      8      9     10     11     12
  ---------------------------------------------------------------------------------
n  1|   1    2     3      4      5      6      7      8      9     10     11     12
   2|   2    9    20     36     56     81    110    144    182    225    272    324
   3|   6   64   216    512   1000   1728   2744   4096   5832   8000  10648  13824
   4|  24  625  3136  10000  24336  50625  93636 160000 256036 390625 571536 810000
		

Crossrefs

Programs

  • Python
    from itertools import permutations, combinations_with_replacement
    def A331988(n,k): # compute T(n,k)
        if k == 1:
            count = 1
            for i in range(1,n):
                count *= i+1
            return count
        ntuple, count = tuple(range(1,n+1)), 0
        for s in combinations_with_replacement(permutations(ntuple,n),k-2):
            t = list(ntuple)
            for d in s:
                for i in range(n):
                    t[i] += d[i]
            t.sort()
            w = 1
            for i in range(n):
                w *= (n-i)+t[i]
            if w > count:
                count = w
        return count

Formula

T(n,n) = (n*(n+1)/2)^n = A061718(n).
T(n,k) <= (k(n+1)/2)^n.
T(1,k) = k = A000027(k).
T(n,1) = n! = A000142(n).
T(2,2m) = 9m^2 = A016766(m).
T(2,2m+1) = (3m+1)*(3m+2) = A001504(m).
T(n,2) = (n+1)^n = A000169(n+1).
T(3,k) = 8k^3 = A016743(k) for k > 1.
If n divides k then T(n,k) = (k*(n+1)/2)^n.
If k is even then T(n,k) = (k*(n+1)/2)^n.
If n is odd and k >= n-1 then T(n,k) = (k*(n+1)/2)^n.
If n is even and k is odd such that k >= n-1, then T(n,k) = ((k^2*(n+1)^2-1)/4)^(n/2).

A353550 Primes having cube prime gaps to both neighbor primes.

Original entry on oeis.org

89689, 107441, 367957, 368021, 725209, 803749, 832583, 919511, 1070753, 1315151, 1333027, 1353487, 1414913, 1843357, 2001911, 2038039, 2201273, 2207783, 2269537, 2356699, 2356763, 2670817, 2696843, 2715071, 2717929, 2731493, 2906887, 2971841, 3032467, 3184177, 3252217
Offset: 1

Views

Author

Karl-Heinz Hofmann, Apr 25 2022

Keywords

Comments

Up to prime 669763117 all gaps are 8 and 64 or 64 and 8. Prime 669763117 is the first one with gaps 8 and 216. Possible gaps must be in A016743.

Examples

			a(2) = 107441; previous prime is 107377 and the gap is 64 (a cube); next prime is 107449 and the gap is 8 (a cube too).
		

Crossrefs

Cf. A000040, A000578, A016743, A353088 (square gaps), A163112 (gaps > 20).
Cf. A353137 (gaps are a power of 2), A353135 (Fibonacci gaps).
Cf. A353136 (triangular numbers gaps).

Programs

A047363 Numbers that are congruent to {0, 2, 3, 4, 5} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, 24, 25, 26, 28, 30, 31, 32, 33, 35, 37, 38, 39, 40, 42, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 58, 59, 60, 61, 63, 65, 66, 67, 68, 70, 72, 73, 74, 75, 77, 79
Offset: 1

Views

Author

Keywords

Comments

Conjecture: Apart from 0, and the further exclusions noted below, the sequence gives the values of c/6 such that an infinite number of primes, p, result in both p^3+c and p^3-c being positive primes. Taking the complement we say: the excluded c/6 values are {1,6} mod 7. See A005097 for a conjecture on the modulo patterns of excluded c/6 values for the general case of p^q + c and p^q - c both prime, for any q > 0, and see A047222 for q=2. Note that polynomial factorization also excludes a few c/6 values. This occurs here when c is an even cube (A016743), which requires a further exclusion of certain c/6 values in this sequence when (6c)^3/6 == 0 (mod 7), or c/6 = {0, 12348, 98784, ...}. - Richard R. Forberg, Jun 28 2016

Crossrefs

Programs

  • Mathematica
    Table[7 n + {0, 2, 3, 4, 5}, {n, 0, 12}] // Flatten (* or *)
    Select[Range[0, 79], ! MemberQ[{1, 6}, Mod[#, 7]] &] (* or *)
    Rest@ CoefficientList[Series[x^2 (2 x^2 + 3 x + 2) (x^2 - x + 1)/((x^4 + x^3 + x^2 + x + 1) (x - 1)^2), {x, 0, 57}], x] (* Michael De Vlieger, Jul 25 2016 *)

Formula

G.f.: x^2*(2*x^2 + 3*x + 2)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
a(n) = a(n-1) + a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 03 2022

A201262 Primes of the form n^3 + 9.

Original entry on oeis.org

17, 73, 521, 1009, 2753, 8009, 10657, 21961, 39313, 54881, 85193, 140617, 195121, 262153, 314441, 512009, 681481, 778697, 941201, 1404937, 3241801, 3511817, 4410953, 4913009, 6028577, 6229513, 6644681, 6859009, 8000009, 8998921
Offset: 1

Views

Author

Vincenzo Librandi, Nov 29 2011

Keywords

Comments

Old name was "Primes of the form 8n^3 + 9".

Examples

			Since 17 is prime and equal to 2^3 + 9, it is in the sequence.
Since 73 is prime and equal to 4^3 + 9, it is in the sequence.
225 is not in the sequence, because, although it is 6^3 + 9, it is divisible by 5.
		

Crossrefs

Cf. A016743.

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is 8*n^3+9]
  • Mathematica
    Select[Table[n^3 + 9, {n, 0, 248, 2}], PrimeQ]

Extensions

Name simplified by Alex Ratushnyak, Apr 06 2013

A379852 a(n) = floor(8*n^3/27).

Original entry on oeis.org

0, 0, 2, 8, 18, 37, 64, 101, 151, 216, 296, 394, 512, 650, 813, 1000, 1213, 1455, 1728, 2032, 2370, 2744, 3154, 3605, 4096, 4629, 5207, 5832, 6504, 7226, 8000, 8826, 9709, 10648, 11645, 12703, 13824, 15008, 16258, 17576, 18962, 20421, 21952, 23557, 25239
Offset: 0

Views

Author

Gonzalo Martínez and Javier Astudillo, Jan 04 2025

Keywords

Comments

a(n) is the integer part of the area of the largest triangle that can be inscribed in the region bounded by the parabola y = x^2, the x-axis, and the line x = n.
To estimate the integral int_{x = 0..n} x^2 dx by means of a triangle, we find that the triangle with the largest area that can be inscribed in the region bounded by the parabola y = x^2, the x-axis and the line x = n is the right triangle with vertices (n/3, 0), (n, 0) and (n, (8/9)*n^2), whose area is (2n/3)^3 and a(n) has been defined as floor((2n/3)^3).

Examples

			If n = 2, the largest triangle that can be inscribed in the region bounded by the parabola y = x^2, the x-axis, and the line x = n is the right triangle with vertices (2/3,0),(2,0) and (2,32/9), whose area is 64/27. Since floor(64/27) = 2, it follows that a(2) = 2.
		

Crossrefs

Programs

  • Mathematica
    Floor[8/27*Range[0, 50]^3] (* Paolo Xausa, Jan 30 2025 *)

Formula

a(n) = floor(A016743(n)/27).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-9) - 3*a(n-10) + 3*a(n-11) - a(n-12) for n >= 12. - Pontus von Brömssen, Jan 14 2025
Showing 1-10 of 11 results. Next