cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163102 a(n) = n^2*(n+1)^2/2.

Original entry on oeis.org

0, 2, 18, 72, 200, 450, 882, 1568, 2592, 4050, 6050, 8712, 12168, 16562, 22050, 28800, 36992, 46818, 58482, 72200, 88200, 106722, 128018, 152352, 180000, 211250, 246402, 285768, 329672, 378450, 432450, 492032, 557568, 629442, 708050, 793800, 887112, 988418
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163282.
Also, the number of nonattacking placements of 2 rooks on an (n+1) X (n+1) board. - Thomas Zaslavsky, Jun 26 2010
If P_{k}(n) is the n-th k-gonal number, then a(n) = P_{s}(n+1)*P_{t}(n+1) - P_{s+1}(n+1)*P_{t-1}(n+1) for s=t+1. - Bruno Berselli, Sep 05 2014
Subsequence of A000982, see formula. - David James Sycamore, Jul 31 2018
Number of edges in the (n+1) X (n+1) rook complement graph. - Freddy Barrera, May 02 2019
Number of paths from (0,0) to (n+2,n+2) consisting of exactly three forward horizontal steps and three upward vertical steps. - Greg Dresden and Snezhana Tuneska, Aug 24 2023

References

  • Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - Thomas Zaslavsky, Jun 26 2010

Crossrefs

Programs

Formula

a(n) = 2*A000537(n) = A035287(n+1)/2. - Omar E. Pol, Nov 29 2011
G.f.: 2*x*(1+4*x+x^2)/(1-x)^5. - R. J. Mathar, Nov 30 2011
Let t(n) = A000217(n). Then a(n) = (t(n-1)*(t(n)+t(n+1)) + t(n)*(t(n-1)+t(n+1)) + t(n+1)*(t(n-1)+t(n)))/3. - J. M. Bergot, Jun 21 2012
a(n) = A000982(n*(n+1)). - David James Sycamore, Jul 31 2018
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2/3 - 6.
Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 8*log(2). (End)
Another identity: ..., a(4) = 200 = 1*(2+4+6+8) + 3*(4+6+8) + 5*(6+8) + 7*(8), a(5) = 450 = 1*(2+4+6+8+10) + 3*(4+6+8+10) + 5*(6+8+10) + 7*(8+10) + 9*(10) = 30+84+120+126+90, and so on. - J. M. Bergot, Aug 25 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: x*(2 + x)*(2 + 6*x + x^2)*exp(x)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A254371(n)/4 = A060300(n)/8. (End)

A060300 a(n) = (2*n*(n+1))^2.

Original entry on oeis.org

0, 16, 144, 576, 1600, 3600, 7056, 12544, 20736, 32400, 48400, 69696, 97344, 132496, 176400, 230400, 295936, 374544, 467856, 577600, 705600, 853776, 1024144, 1218816, 1440000, 1690000, 1971216, 2286144, 2637376, 3027600, 3459600, 3936256, 4460544, 5035536, 5664400
Offset: 0

Views

Author

Jason Earls, Mar 25 2001

Keywords

Comments

Arises from middle column 4^2, 12^2, 24^2, ... of following triangle: :
3^2 + 4^2 = 5^2
10^2 + 11^2 + 12^2 = 13^2 + 14^2
21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2
36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2
...

References

  • C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, pp. 90-92.

Crossrefs

Programs

  • Magma
    [(2*n*(n+1))^2: n in [0..30]]; // Vincenzo Librandi, Nov 18 2016
  • Mathematica
    CoefficientList[Series[16 x (1 + 4 x + x^2) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Nov 18 2016 *)
    Table[(2n(n+1))^2,{n,0,30}] (* Harvey P. Dale, Jan 19 2019 *)
  • PARI
    a(n) = { (2*n*(n + 1))^2 } \\ Harry J. Smith, Jul 03 2009
    

Formula

G.f.: 16*x*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Apr 22 2012
a(n) = 4*A035287(n+1) = 4*A002378(n)^2. - Michel Marcus, May 24 2016
a(n) = 16*A000537(n) = 16*(n*(n+1)/2)^2 = 16*A000217(n)^2 = A046092(n)^2. - Bruce J. Nicholson, Jun 05 2017
a(n) = Integral_{x=1..2*n+1} (x^3-x) dx. - César Aguilera, Jun 27 2020
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 4*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 2*A254371(n) = 8*A163102(n). (End)

Extensions

Name corrected by Harry J. Smith, Jul 03 2009

A064716 Smallest member of three consecutive numbers each of which is the sum of two nonzero squares (not necessarily different).

Original entry on oeis.org

72, 232, 288, 520, 584, 800, 808, 1096, 1152, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2592, 2600, 2824, 3328, 3392, 3528, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6272, 6352, 6408, 6568, 6920, 8080
Offset: 1

Views

Author

Robert G. Wilson v, Oct 13 2001

Keywords

Comments

a(n) == 0 (modulo 4) since no integer == 3 (modulo 4) can be represented as the sum of two squares.
This sequence has as a subsequence 72, 288, 800, 1800, ... which is 8 * (triangular numbers)^2. Proof: If x = 8*(n(n+1)/2)^2 then x = (n(n+1))^2 + (n(n+1))^2, x+1 = ((n-1)(n+1))^2 + (n(n+2))^2 and x+2 = (n^2+n-1)^2 + (n^2+n+1)^2. See A254371 - Joshua Zucker, Nov 01 2002
From Altug Alkan, Apr 13 2016: (Start)
If n is in this sequence, so is n*(n+2). Proof:
If n is in this sequence, then n = a^2 + b^2, n+1 = c^2 + d^2, n+2 = e^2 + f^2 for a, b, c, d, e, f being nonzero integers.
So, n*(n+2) = (a^2 + b^2)*(e^2 + f^2) = (a*e + b*f)^2 + (a*f - b*e)^2. Note that a*f cannot be equal to b*e because of their definitions.
n*(n+2) + 1 = n^2 + 2*n + 1 = (n+1)^2. Since we know that n mod 4 = 0, then n+1 cannot be of the form 2*k^2, that is, c and d must be different. So (n+1)^2 is the sum of two nonzero squares because n+1 = c^2 + d^2.
n*(n+2) + 2 = (n+1)^2 + 1, that is obviously the sum of two nonzero squares.
So if n is in this sequence, then n*(n+2), n*(n+2) + 1 and n*(n+2) + 2 are the sums of two nonzero squares, that is n*(n+2) must also be member of this sequence.
Note that it can be produced by repeating of this result and n*(n+2)*(n*(n+2)+2)*(n*(n+2)*(n*(n+2)+2)+2)... is always a member, if n is a member. (End)
For k > 0, 25*k^2*(10*k+2)^2 and 8*A001080(k)^2 are terms. - Jinyuan Wang, Feb 23 2019

Examples

			72 = 6^2 + 6^2, 73 = 3^2 + 8^2, 74 = 5^2 + 7^2.
		

Crossrefs

Cf. A254371 \ {0, 8} (a subsequence).

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= {seq(seq(a^2+b^2, b=1..floor(sqrt(N+2-a^2))),a=1..floor(sqrt(N+2)))}:
    sort(convert(S intersect map(`-`,S,1) intersect map(`-`,S,2),list)); # Robert Israel, Apr 14 2016
  • Mathematica
    a = Table[n^2, {n, 1, 100}]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i} ]; c = Union[c]; c[[ Select[ Range[ Length[c] - 2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]]
    Select[Range@ 8080, AllTrue[# + {0, 1, 2}, Length[ PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] &] (* _Michael De Vlieger, Apr 13 2016, Version 10 *)
  • PARI
    is(n)= for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2));
    lista(nn) = {for(n=1,nn,if(is(n)==1&&is(n+1)==1&&is(n+2)==1,print1(n,", ")))}; \\ Jinyuan Wang, Feb 23 2019

A369585 Table read by rows. T(n, k) = [z^k] h(n, 1, z) where h(n, v, z) are the modified Lommel polynomials (A369117).

Original entry on oeis.org

1, 0, 2, -1, 0, 8, 0, -8, 0, 48, 1, 0, -72, 0, 384, 0, 18, 0, -768, 0, 3840, -1, 0, 288, 0, -9600, 0, 46080, 0, -32, 0, 4800, 0, -138240, 0, 645120, 1, 0, -800, 0, 86400, 0, -2257920, 0, 10321920, 0, 50, 0, -19200, 0, 1693440, 0, -41287680, 0, 185794560
Offset: 0

Views

Author

Peter Luschny, Jan 30 2024

Keywords

Examples

			The list of coefficients starts:
  [0]  1
  [1]  0,   2
  [2] -1,   0,    8
  [3]  0,  -8,    0,   48
  [4]  1,   0,  -72,    0,   384
  [5]  0,  18,    0, -768,     0,    3840
  [6] -1,   0,  288,    0, -9600,       0,    46080
  [7]  0, -32,    0, 4800,     0, -138240,        0, 645120
  [8]  1,   0, -800,    0, 86400,       0, -2257920,      0, 10321920
		

Crossrefs

Diagonals include: A000165 (main diagonal), A014479, A286725.
Columns include bisections of: A001105, A254371.
Cf. A093985 (row sums), A036243 (abs row sums), A369117.

Programs

  • Maple
    p := proc(n,  x) option remember; if n = -1 then 0 elif n = 0 then 1 else
    2*n*z*p(n - 1, z) - p(n - 2, z) fi end:
    seq(seq(coeff(p(n, z), z, k), k = 0..n), n = 0..9);
  • Mathematica
    Table[CoefficientList[Expand[ResourceFunction["LommelR"][n, 1, 1/z]], z], {n, 0, 8}] // MatrixForm

Formula

T(n, k) = [z^k] 2*n*z*p(n-1, z) - p(n-2, z) where p(-1, z) = 0 and p(0, z) = 1.
T(n, k) = (-1)^k * [z^k] h(n, -n, z) where h(n, v, z) are the modified Lommel polynomials (A369117).
Showing 1-4 of 4 results.