A073412 Lesser of three consecutive nonsquare integers each of which is the sum of two squares.
72, 232, 520, 584, 800, 808, 1096, 1152, 1312, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2592, 2824, 3328, 3392, 3528, 4112, 4176, 4328, 5120, 5408, 5904, 6056, 6120, 6272, 6352, 6408, 6568, 6920, 8080, 8144, 8296, 8352, 8584, 8712, 9160, 9376
Offset: 1
Keywords
Examples
232 is here since 232 = 6^2 + 14^2; 233 = 8^2 + 13^2; 234 = 3^2 + 15^2 and 232, 233, 234 are all nonsquares. 288 is not a term because 288 = 12^2 + 12^2, 289 = 8^2 + 15^2, 290 = 1^2 + 17^2 but 289 is also square.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
is415:= proc(n) local F; if issqr(n) then return false fi; F:= select(t -> t[1] mod 4 = 3, ifactors(n)[2]); andmap(t -> t[2]::even, F); end proc: Q:= select(is415, [seq(seq(8*i+j,j=0..2),i=1..2000)]): Q[select(t -> Q[t+2]-Q[t]=2, [$1..nops(Q)-2])]; # Robert Israel, Mar 05 2018
-
Mathematica
nsQ[x_] := !IntegerQ[Sqrt[x]]; prQ[x_] := With[{pr = PowersRepresentations[x, 2, 2]}, pr != {} && AllTrue[pr[[1]], IntegerQ]]; selQ[x_] := nsQ[x] && nsQ[x+1] && nsQ[x+2] && prQ[x] && prQ[x+1] && prQ[x+2]; Select[8 Range[10000], selQ] (* Jean-François Alcover, Jun 11 2020 *)
-
PARI
isA001481(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1; isok(n) = isA001481(n) && isA001481(n+1) && isA001481(n+2) && !issquare(n) && !issquare(n+1); lista(nn) = for(n=1, nn, if(isok(8*n), print1(8*n, ", "))); \\ Altug Alkan, Jul 07 2016
Extensions
Edited by Robert Israel, Mar 05 2018
Comments