A064715 Smallest member of triple of consecutive numbers each of which is the sum of two different nonzero squares.
232, 520, 584, 800, 808, 1096, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2600, 2824, 3328, 3392, 3600, 4112, 4176, 4328, 4624, 5120, 5328, 5408, 5904, 6056, 6120, 6352, 6408, 6568, 6920, 8080, 8144, 8296, 8352, 8584, 9160, 9376
Offset: 1
Keywords
Examples
232 = 6^2 + 14^2, 233 = 8^2 + 13^2, and 234 = 3^2 + 15^2.
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books Ltd., Middlesex, England, 1997, page 133. - "It is not possible to have 4 such consecutive numbers."
Links
- Zak Seidov, Table of n, a(n) for n = 1..1200
Crossrefs
Cf. A004431.
Programs
-
Mathematica
a = Table[n^2, {n, 1, 100} ]; c = {}; Do[ c = Append[c, a[[i]] + a[[j]]], {i, 1, 100}, {j, 1, i - 1} ]; c = Union[c]; c[[ Select[ Range[ Length[c] - 2], c[[ # ]] + 2 == c[[ # + 2 ]] & ]]]
Comments