Thomas Zaslavsky has authored 34 sequences. Here are the ten most recent ones:
A385523
Numbers that are not cycle counts of inseparable graphs.
Original entry on oeis.org
2, 4, 5, 8, 9, 16
Offset: 1
- Ryan McCulloch, Brendan D. McKay, Alireza Salahshoori, and Thomas Zaslavsky, The Cycle Counts of Graphs, arXiv:2507.02260 [math.CO], 2025.
A385524
Numbers that are not cycle counts of inseparable cubic multigraphs.
Original entry on oeis.org
1, 2, 4, 5, 8, 9, 13, 16
Offset: 1
- Ryan McCulloch, Brendan D. McKay, Alireza Salahshoori, and Thomas Zaslavsky, The Cycle Counts of Graphs, arXiv:2507.02260 [math.CO], 2025.
A379695
Number of equivalence classes of regular vines in dimension n.
Original entry on oeis.org
1, 1, 1, 2, 6, 40, 560, 17024
Offset: 1
- D. Kurowicka and H. Joe, eds. Dependence Modeling. Vine Copula Handbook. World Scientific, Hackensack, NJ, 2011. (§10.3)
- Hung Manh Tran, Tan Nhat Tran, and Shuhei Tsujie, Vines and MAT-labeled graphs, Séminaire Lotharingien de Combinatoire 91B (2024) Article #12, 12 pp.
A179061
Number of non-attacking placements of 6 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 720, 35280, 564480, 5080320, 31752000, 153679680, 614718720, 2120152320, 6492966480, 18036018000, 46172206080, 110279070720, 248127909120, 530024705280, 1081683072000, 2120098821120, 4008311833680
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
A179062
Number of non-attacking placements of 7 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 5040, 322560, 6531840, 72576000, 548856000, 3161410560, 14841066240, 59364264960, 208702494000, 659602944000, 1906252508160, 5104345559040, 12796310741760, 30287126016000, 68146033536000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
-
7! Binomial[Range[30],7]^2 (* or *) LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{0,0,0,0,0,0,5040,322560,6531840,72576000,548856000,3161410560,14841066240,59364264960,208702494000},30] (* Harvey P. Dale, May 25 2017 *)
-
a(n) = 7! * binomial(n, 7)^2 \\ Andrew Howroyd, Feb 13 2018
A179063
Number of non-attacking placements of 8 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 40320, 3265920, 81648000, 1097712000, 9879408000, 66784798080, 363606122880, 1669619952000, 6678479808000, 23828156352000, 77203226580480, 230333593351680, 639815537088000, 1669577821632000, 4122835028928000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
A179059
Number of non-attacking placements of 4 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 24, 600, 5400, 29400, 117600, 381024, 1058400, 2613600, 5880600, 12269400, 24048024, 44717400, 79497600, 135945600, 224726400, 360561024, 563376600, 859685400, 1284221400, 1881864600, 2709885024, 3840540000, 5364060000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,0,24,600,5400,29400,117600,381024},40] (* Harvey P. Dale, Feb 19 2013 *)
a[n_] := If[n<4, 0, Coefficient[n!*LaguerreL[n, x], x, n-4] // Abs];
Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
-
a(n) = 4! * binomial(n, 4)^2; \\ Andrew Howroyd, Feb 13 2018
A179064
Number of non-attacking placements of 9 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 362880, 36288000, 1097712000, 17563392000, 185513328000, 1454424491520, 9090153072000, 47491411968000, 214453407168000, 857813628672000, 3096707199505920, 10237048593408000, 31350961317312000
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
A179065
Number of non-attacking placements of 10 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 439084800, 15807052800, 296821324800, 3636061228800, 32724551059200, 232707918643200, 1372501805875200, 6948290392243200, 30967071995059200, 123868287980236800
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
A179060
Number of non-attacking placements of 5 rooks on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 120, 4320, 52920, 376320, 1905120, 7620480, 25613280, 75271680, 198764280, 480960480, 1082161080, 2289530880, 4594961280, 8809274880, 16225246080, 28844881920, 49689816120, 83217546720, 135870624120
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
a[n_] := If[n<5, 0, Coefficient[n!*LaguerreL[n, x], x, n-5] // Abs];
Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
-
a(n) = 5! * binomial(n, 5)^2 \\ Andrew Howroyd, Feb 13 2018
Comments