cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Thomas Zaslavsky

Thomas Zaslavsky's wiki page.

Thomas Zaslavsky has authored 34 sequences. Here are the ten most recent ones:

A385523 Numbers that are not cycle counts of inseparable graphs.

Original entry on oeis.org

2, 4, 5, 8, 9, 16
Offset: 1

Author

Thomas Zaslavsky, Jul 01 2025

Keywords

Comments

Since subdividing edges does not change the inseparability or the cycle count, the sequence holds equally for simple graphs and multigraphs.

Crossrefs

Cf. A385524 (cubic graphs).

A385524 Numbers that are not cycle counts of inseparable cubic multigraphs.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 13, 16
Offset: 1

Author

Thomas Zaslavsky, Jul 01 2025

Keywords

Crossrefs

Cf. A385523.

A379695 Number of equivalence classes of regular vines in dimension n.

Original entry on oeis.org

1, 1, 1, 2, 6, 40, 560, 17024
Offset: 1

Author

Thomas Zaslavsky, Jan 03 2025

Keywords

Comments

a(n) is also the number of non-isomorphic MAT-labelings of complete graph K_n. (Tran, Tran, Tsujie, 2024, Theorem 3.1).

References

  • D. Kurowicka and H. Joe, eds. Dependence Modeling. Vine Copula Handbook. World Scientific, Hackensack, NJ, 2011. (§10.3)

A179061 Number of non-attacking placements of 6 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 720, 35280, 564480, 5080320, 31752000, 153679680, 614718720, 2120152320, 6492966480, 18036018000, 46172206080, 110279070720, 248127909120, 530024705280, 1081683072000, 2120098821120, 4008311833680
Offset: 1

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=5 of A144084.
Cf. A179060 (5 rooks), A179062 (7 rooks).

Programs

Formula

a(n) = 6! * binomial(n, 6)^2.
G.f.: -720*x^6*(x^6+36*x^5+225*x^4+400*x^3+225*x^2+36*x+1) / (x-1)^13. - Colin Barker, Jan 08 2013

A179062 Number of non-attacking placements of 7 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5040, 322560, 6531840, 72576000, 548856000, 3161410560, 14841066240, 59364264960, 208702494000, 659602944000, 1906252508160, 5104345559040, 12796310741760, 30287126016000, 68146033536000
Offset: 1

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=7 of A144084.
Cf. A179061 (6 rooks), A179063 (8 rooks).

Programs

  • Mathematica
    7! Binomial[Range[30],7]^2 (* or *) LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{0,0,0,0,0,0,5040,322560,6531840,72576000,548856000,3161410560,14841066240,59364264960,208702494000},30] (* Harvey P. Dale, May 25 2017 *)
  • PARI
    a(n) = 7! * binomial(n, 7)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 7!*binomial(n,7)^2.
G.f.: -5040*x^7*(x+1)*(x^6+48*x^5+393*x^4+832*x^3+393*x^2+48*x+1) / (x-1)^15. - Colin Barker, Jan 08 2013

A179063 Number of non-attacking placements of 8 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 40320, 3265920, 81648000, 1097712000, 9879408000, 66784798080, 363606122880, 1669619952000, 6678479808000, 23828156352000, 77203226580480, 230333593351680, 639815537088000, 1669577821632000, 4122835028928000
Offset: 1

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=8 of A144084.
Cf. A179062 (7 rooks), A179064 (9 rooks).

Programs

Formula

a(n) = 8!*binomial(n,8)^2.
G.f.: -40320*x^8*(x^8 +64*x^7 +784*x^6 +3136*x^5 +4900*x^4 +3136*x^3 +784*x^2 +64*x +1) / (x -1)^17. - Colin Barker, Jan 08 2013

A179059 Number of non-attacking placements of 4 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 24, 600, 5400, 29400, 117600, 381024, 1058400, 2613600, 5880600, 12269400, 24048024, 44717400, 79497600, 135945600, 224726400, 360561024, 563376600, 859685400, 1284221400, 1881864600, 2709885024, 3840540000, 5364060000
Offset: 1

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=4 of A144084.
Cf. A179058 (3 rooks), A179060 (5 rooks).

Programs

  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,0,24,600,5400,29400,117600,381024},40] (* Harvey P. Dale, Feb 19 2013 *)
    a[n_] := If[n<4, 0, Coefficient[n!*LaguerreL[n, x], x, n-4] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 4! * binomial(n, 4)^2; \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 4! * binomial(n, 4)^2.
From Colin Barker, Jan 08 2013: (Start)
a(n) = (n^2*(-6+11*n-6*n^2+n^3)^2)/24.
G.f.: -24*x^4*(x^4 +16*x^3 +36*x^2 +16*x +1) / (x -1)^9.
(End)
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=4} 1/a(n) = (20*Pi^2 - 197)/9.
Sum_{n>=4} (-1)^n/a(n) = (64*log(2) - 44)/9. (End)

A179064 Number of non-attacking placements of 9 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 362880, 36288000, 1097712000, 17563392000, 185513328000, 1454424491520, 9090153072000, 47491411968000, 214453407168000, 857813628672000, 3096707199505920, 10237048593408000, 31350961317312000
Offset: 1

Author

Thomas Zaslavsky, Jun 28 2010

Keywords

Crossrefs

Column k=9 of A144084.
Cf. A179063 (8 rooks), A179065 (10 rooks).

Programs

Formula

a(n) = 9!*binomial(n,9)^2.
G.f.: -362880*x^9*(x +1)*(x^8 +80*x^7 +1216*x^6 +5840*x^5 +10036*x^4 +5840*x^3 +1216*x^2 +80*x +1) / (x -1)^19. - Colin Barker, Jan 08 2013

A179065 Number of non-attacking placements of 10 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 439084800, 15807052800, 296821324800, 3636061228800, 32724551059200, 232707918643200, 1372501805875200, 6948290392243200, 30967071995059200, 123868287980236800
Offset: 1

Author

Thomas Zaslavsky, Jun 28 2010

Keywords

Crossrefs

Column k=10 of A144084.
Cf. A179064 (9 rooks).

Programs

Formula

a(n) = 10! * binomial(n, 10)^2.

A179060 Number of non-attacking placements of 5 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 120, 4320, 52920, 376320, 1905120, 7620480, 25613280, 75271680, 198764280, 480960480, 1082161080, 2289530880, 4594961280, 8809274880, 16225246080, 28844881920, 49689816120, 83217546720, 135870624120
Offset: 1

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=5 of A144084.
Cf. A179059 (4 rooks), A179061 (6 rooks).

Programs

  • Mathematica
    a[n_] := If[n<5, 0, Coefficient[n!*LaguerreL[n, x], x, n-5] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 5! * binomial(n, 5)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 5! * binomial(n, 5)^2.
G.f.: -120*x^5*(x+1)*(x^4+24*x^3+76*x^2+24*x+1) / (x-1)^11. - Colin Barker, Jan 08 2013