cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144084 T(n,k) is the number of partial bijections of height k (height(alpha) = |Im(alpha)|) of an n-element set.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 72, 96, 24, 1, 25, 200, 600, 600, 120, 1, 36, 450, 2400, 5400, 4320, 720, 1, 49, 882, 7350, 29400, 52920, 35280, 5040, 1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320
Offset: 0

Views

Author

Abdullahi Umar, Sep 10 2008, Sep 30 2008

Keywords

Comments

T(n,k) is also the number of elements in the Green's J equivalence classes in the symmetric inverse monoid, I sub n.
T(n,k) is also the number of ways to place k nonattacking rooks on an n X n chessboard. It can be obtained by performing P(n,k) permutations of n-columns over each C(n,k) combination of n-rows for the given k-rooks. The rule is also applicable for unequal (m X n) sized rectangular boards. - Antal Pinter, Nov 12 2014
Rows also give the coefficients of the matching-generating polynomial of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Apr 24 2017
Rows also give the coefficients of the independence polynomial of the n X n rook graph and clique polynomial of the n X n rook complement graph. - Eric W. Weisstein, Jun 13 and Sep 14 2017
T(n,k) is the number of increasing subsequences of length n-k over all permutations of [n]. - Geoffrey Critzer, Jan 08 2023

Examples

			T(3,1) = 9 because there are exactly 9 partial bijections (on a 3-element set) of height 1, namely: (1)->(1), (1)->(2), (1)->(3), (2)->(1), (2)->(2), (2)->(3), (3)->(1), (3)->(2), (3)->(3).
Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,   2;
  1,  9,  18,    6;
  1, 16,  72,   96,   24;
  1, 25, 200,  600,  600,  120;
  1, 36, 450, 2400, 5400, 4320, 720;
  ...
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995).
  • Vaclav Kotesovec, Non-attacking chess pieces, 6th ed. (2013), p. 216, p. 218.

Crossrefs

T(n,k) = |A021010|. Sum of rows of T(n,k) is A002720. T(n,n) is the order of the symmetric group on an n-element set, n!.

Programs

  • Magma
    /* As triangle */ [[(Binomial(n,k)^2)*Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jun 13 2017
    
  • Maple
    T:= (n, k)-> (binomial(n, k)^2)*k!:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 04 2012
  • Mathematica
    Table[Table[Binomial[n, k]^2 k!,{k, 0, n}], {n, 0, 6}] // Flatten (* Geoffrey Critzer, Dec 04 2012 *)
    Table[ CoefficientList[n!*LaguerreL[n, x], x] // Abs // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 18 2013 *)
    CoefficientList[Table[n! x^n LaguerreL[n, -1/x], {n, 0, 8}], x] // Flatten (* Eric W. Weisstein, Apr 24 2017 *)
    CoefficientList[Table[(-x)^n HypergeometricU[-n, 1, -(1/x)], {n, 5}],
      x] // Flatten (* Eric W. Weisstein, Jun 13 2017 *)
  • PARI
    T(n,k) = k! * binomial(n,k)^2 \\ Andrew Howroyd, Feb 13 2018

Formula

T(n,k) = (C(n,k)^2)*k!.
T(n,k) = A007318(n,k) * A008279(n,k). - Antal Pinter, Nov 12 2014
From Peter Bala, Jul 04 2016: (Start)
G.f.: exp(x*t)*I_0(2*sqrt(x)) = 1 + (1 + t)*x/1!^2 + (1 + 4*t + 2*t^2)*x^2/2!^2 + (1 + 9*t + 18*t^2 + 6*t^3)*x^3/3!^2 + ..., where I_0(x) = Sum_{n >= 0} (x/2)^(2*n)/n!^2 is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*n!/k!*binomial(n,k) *t^(n-k)*R(k,t). Cf. A089231. (End)
From Peter Bala, Oct 05 2019: (Start)
E.g.f.: 1/(1 - t*x)*exp(x/(1 - t*x)).
Recurrence for row polynomials: R(n+1,t) = (1 + (2*n+1)*t)R(n,t) - n^2*t^2*R(n-1,t), with R(0,t) = 1 and R(1,t) = 1 + t.
R(n,t) equals the denominator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The numerator polynomial is the (n+1)-th row polynomial of A089231. (End)
Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/A001044(n) = exp(y*x)*E(x) where E(x) = Sum_{n>=0} x^n/A001044(n). - Geoffrey Critzer, Jan 08 2023
Sum_{k=0..n} k*T(n,k) = A105219(n). - Alois P. Heinz, Jan 08 2023
T(n,k) = Sum_{d=0..2*k} c(k,d)*n^d, where c(k,d) = Sum_{j=max(d-k,0)..k} binomial(k,j)*A008275(k+j,d)/j!. - Eder G. Santos, Jan 23 2025

A179063 Number of non-attacking placements of 8 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 40320, 3265920, 81648000, 1097712000, 9879408000, 66784798080, 363606122880, 1669619952000, 6678479808000, 23828156352000, 77203226580480, 230333593351680, 639815537088000, 1669577821632000, 4122835028928000
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Crossrefs

Column k=8 of A144084.
Cf. A179062 (7 rooks), A179064 (9 rooks).

Programs

Formula

a(n) = 8!*binomial(n,8)^2.
G.f.: -40320*x^8*(x^8 +64*x^7 +784*x^6 +3136*x^5 +4900*x^4 +3136*x^3 +784*x^2 +64*x +1) / (x -1)^17. - Colin Barker, Jan 08 2013

A179065 Number of non-attacking placements of 10 rooks on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 439084800, 15807052800, 296821324800, 3636061228800, 32724551059200, 232707918643200, 1372501805875200, 6948290392243200, 30967071995059200, 123868287980236800
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 28 2010

Keywords

Crossrefs

Column k=10 of A144084.
Cf. A179064 (9 rooks).

Programs

Formula

a(n) = 10! * binomial(n, 10)^2.
Showing 1-3 of 3 results.