A378590 Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]).
1, 1, 1, 1, 4, 4, 1, 9, 26, 26, 8, 1, 16, 92, 232, 260, 112, 16, 1, 25, 240, 1124, 2728, 3368, 1960, 440, 32, 1, 36, 520, 3896, 16428, 39680, 53744, 38368, 12944, 1600, 64, 1, 49, 994, 10894, 70792, 282248, 692320, 1022320, 867328, 389312, 81184, 5792, 128
Offset: 0
Examples
Triangle begins: 1; 1 1; 1 4 4; 1 9 26 26 8; 1 16 92 232 260 112 16; 1 25 240 1124 2728 3368 1960 440 32; 1 36 520 3896 16428 39680 53744 38368 12944 1600 64; 1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128; ... For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are: +---+---+ +---+---+ +---+---+ +---+---+ | B | B | | B | | | | B | | | | +---+---+ , +---+---+ , +---+---+ , +---+---+ | | | | B | | | | B | | B | B | +---+---+ +---+---+ +---+---+ +---+---+
Links
- S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, A q-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders, J. Korean Math. Soc., 57(6): 1407-1433, 2020; see also arXiv preprint, arXiv:1609.00853 [math.CO], 2016-2020.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 234-259.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024.
Crossrefs
Programs
-
SageMath
def stirling2_negativek(n,k): if k < 0: return 0 else: return stirling_number2(n,k) print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]])
Formula
T(n,k) = Sum_{j=0..k} (Sum_{i=0..j} binomial(floor(n/2),i) * Stirling2(n-i,n-j)) * (Sum_{l=0..k-j} binomial(ceiling(n/2),l) * Stirling2(n-l,n-k+j)).
T(n,2*n-2+delta(n,1)+2*delta(n,0)) = A000079(n)-delta(n,1).
Comments