cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A002720 Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.

Original entry on oeis.org

1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024

Examples

			G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - _Michael Somos_, Jul 31 2018
		

References

  • J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
  • J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.

Crossrefs

Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.

Programs

  • Magma
    [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
    
  • Maple
    A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
    A002720 := proc(n)
        option remember;
        if n <= 1 then
            n+1 ;
        else
            2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 09 2017
  • Mathematica
    Table[n! LaguerreL[n, -1], {n, 0, 25}]
    Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
    RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
  • PARI
    a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
    
  • PARI
    a(n) = suminf ( k=0, binomial(n+k,n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
    
  • PARI
    {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,x^m/m!^2),n)} /* Paul D. Hanna, Nov 18 2011 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
    
  • PARI
    my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
    
  • Python
    from math import factorial, comb
    def A002720(n): return sum(factorial(k)*comb(n,k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
  • SageMath
    [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
    

Formula

a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem): a(n) = Integral_{x=0..oo} x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1) dx, n >= 0. - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
a(n) = denominator of (1 + n/(1 + n/(1 + (n-1)/(1 + (n-1)/(1 + ... + 1/(1 + 1/(1))))))). See A000262 for the numerators. - Peter Bala, Feb 11 2025

Extensions

2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998

A277373 a(n) = Sum_{k=0..n} binomial(n,n-k)*n^(n-k)*n!/(n-k)!.

Original entry on oeis.org

1, 2, 14, 168, 2840, 61870, 1649232, 51988748, 1891712384, 78031713690, 3598075308800, 183396819358192, 10239159335648256, 621414669926828102, 40733145577028065280, 2867932866586451980500, 215859025837098699948032, 17295664826665032427023922, 1469838791737283957748596736
Offset: 0

Views

Author

Peter Luschny, Oct 12 2016

Keywords

Comments

Limit_{n -> infinity} (LaguerreL(n,-n)/BesselI(0,2*n))^(1/n) = exp(-2 + 1/phi) * phi^2 = 0.657347578792874..., where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
For m > 0, n!*LaguerreL(n, -m*n) ~ sqrt(1/2 + (m+2)/(2*sqrt(m*(m+4)))) * (2+m+sqrt(m*(m+4)))^n * exp(n*(sqrt(m*(m+4))-m-2)/2) * n^n / 2^n. - Vaclav Kotesovec, Oct 14 2016
For m > 4, (-1)^n * n! * LaguerreL(n, m*n) ~ sqrt(1/2 + (m-2)/(2*sqrt(m*(m-4)))) * exp((m - 2 - sqrt(m*(m-4)))*n/2) * ((m - 2 + sqrt(m*(m-4)))/2)^n * n^n. - Vaclav Kotesovec, Feb 20 2020

Crossrefs

Cf. A002720 (n!L(n,-1)), A087912 (n!L(n,-2)), A277382 (n!L(n,-3)), A277372 (n!L(n,-n)-n^n), A277423 (n!L(n,n)), A144084 (polynomials).
Cf. A277391 (n!L(n,-2*n)), A277392 (n!L(n,-3*n)), A277418 (n!L(n,-4*n)), A277419 (n!L(n,-5*n)), A277420 (n!L(n,-6*n)), A277421 (n!L(n,-7*n)), A277422 (n!L(n,-8*n)).
Main diagonal of A289192.

Programs

  • Magma
    [(&+[Binomial(n, n-k)*Binomial(n, k)*n^(n-k)*Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 16 2018
  • Maple
    A277373 := n -> n!*LaguerreL(n, -n): seq(simplify(A277373(n)), n=0..18);
    # second Maple program:
    a:= n-> n! * add(binomial(n, i)*n^i/i!, i=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jun 27 2017
  • Mathematica
    Table[n!*LaguerreL[n, -n], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n,n-k)*n^(n-k)*n!/(n-k)!) \\ Charles R Greathouse IV, Feb 07 2017
    
  • PARI
    a(n) = n!*pollaguerre(n, 0, -n); \\ Michel Marcus, Feb 05 2021
    
  • Sage
    @cached_function
    def L(n, x):
        if n == 0: return 1
        if n == 1: return 1 - x
        return (L(n-1,x) * (2*n-1-x) - L(n-2,x)*(n-1))/n
    A277373 = lambda n: factorial(n)*L(n, -n)
    print([A277373(n) for n in (0..20)])
    

Formula

a(n) = p(n,n) where p(n,x) = Sum_{k=0..n} binomial(n,n-k)*x^(n-k)*n!/(n-k)!. The coefficients of these polynomials are in A144084 (sorted by falling powers).
a(n) = n!*LaguerreL(n, -n).
a(n) = (-1)^n*KummerU(-n, 1, -n).
a(n) = n^n*hypergeom([-n, -n], [], 1/n) for n>=1.
a(n) ~ n^n * phi^(2*n+1) * exp(n/phi-n) / 5^(1/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * [x^n] exp(n*x/(1-x))/(1-x). - Alois P. Heinz, Jun 28 2017
a(n) = n!^2 * [x^n] exp(x) * BesselI(0,2*sqrt(n*x)). - Ilya Gutkovskiy, Jun 19 2022

A163102 a(n) = n^2*(n+1)^2/2.

Original entry on oeis.org

0, 2, 18, 72, 200, 450, 882, 1568, 2592, 4050, 6050, 8712, 12168, 16562, 22050, 28800, 36992, 46818, 58482, 72200, 88200, 106722, 128018, 152352, 180000, 211250, 246402, 285768, 329672, 378450, 432450, 492032, 557568, 629442, 708050, 793800, 887112, 988418
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163282.
Also, the number of nonattacking placements of 2 rooks on an (n+1) X (n+1) board. - Thomas Zaslavsky, Jun 26 2010
If P_{k}(n) is the n-th k-gonal number, then a(n) = P_{s}(n+1)*P_{t}(n+1) - P_{s+1}(n+1)*P_{t-1}(n+1) for s=t+1. - Bruno Berselli, Sep 05 2014
Subsequence of A000982, see formula. - David James Sycamore, Jul 31 2018
Number of edges in the (n+1) X (n+1) rook complement graph. - Freddy Barrera, May 02 2019
Number of paths from (0,0) to (n+2,n+2) consisting of exactly three forward horizontal steps and three upward vertical steps. - Greg Dresden and Snezhana Tuneska, Aug 24 2023

References

  • Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - Thomas Zaslavsky, Jun 26 2010

Crossrefs

Programs

Formula

a(n) = 2*A000537(n) = A035287(n+1)/2. - Omar E. Pol, Nov 29 2011
G.f.: 2*x*(1+4*x+x^2)/(1-x)^5. - R. J. Mathar, Nov 30 2011
Let t(n) = A000217(n). Then a(n) = (t(n-1)*(t(n)+t(n+1)) + t(n)*(t(n-1)+t(n+1)) + t(n+1)*(t(n-1)+t(n)))/3. - J. M. Bergot, Jun 21 2012
a(n) = A000982(n*(n+1)). - David James Sycamore, Jul 31 2018
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2/3 - 6.
Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 8*log(2). (End)
Another identity: ..., a(4) = 200 = 1*(2+4+6+8) + 3*(4+6+8) + 5*(6+8) + 7*(8), a(5) = 450 = 1*(2+4+6+8+10) + 3*(4+6+8+10) + 5*(6+8+10) + 7*(8+10) + 9*(10) = 30+84+120+126+90, and so on. - J. M. Bergot, Aug 25 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: x*(2 + x)*(2 + 6*x + x^2)*exp(x)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A254371(n)/4 = A060300(n)/8. (End)

A062139 Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).

Original entry on oeis.org

1, 3, -1, 12, -8, 1, 60, -60, 15, -1, 360, -480, 180, -24, 1, 2520, -4200, 2100, -420, 35, -1, 20160, -40320, 25200, -6720, 840, -48, 1, 181440, -423360, 317520, -105840, 17640, -1512, 63, -1, 1814400, -4838400, 4233600
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

The row polynomials s(n,x) := n!*L(n,2,x) = Sum_{m=0..n} a(n,m)*x^m have e.g.f. exp(-z*x/(1-z))/(1-z)^3. They are Sheffer polynomials satisfying the binomial convolution identity s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} |A008297(n,m)|*(-x)^m, n >= 1 and p(0,x)=1 (for Sheffer polynomials see A048854 for S. Roman reference).
This unsigned matrix is embedded in the matrix for n!*L(n,-2,-x). Introduce 0,0 to each unsigned row and then add 1,-1,1 to the array as the first two rows to generate n!*L(n,-2,-x). - Tom Copeland, Apr 20 2014
The unsigned n-th row reverse polynomial equals the numerator polynomial of the finite continued fraction 1 - x/(1 + (n+1)*x/(1 + n*x/(1 + n*x/(1 + ... + 2*x/(1 + 2*x/(1 + x/(1 + x/(1)))))))). Cf. A089231. The denominator polynomial of the continued fraction is the (n+1)-th row polynomial of A144084. An example is given below. - Peter Bala, Oct 06 2019

Examples

			Triangle begins:
     1;
     3,    -1;
    12,    -8,    1;
    60,   -60,   15,   -1;
   360,  -480,  180,  -24,  1;
  2520, -4200, 2100, -420, 35, -1;
  ...
2!*L(2,2,x) = 12 - 8*x + x^2.
Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - _Peter Bala_, Oct 06 2019
		

Crossrefs

For m=0..5 the (unsigned) columns give A001710, A005990, A005461, A062193-A062195. The row sums (signed) give A062197, the row sums (unsigned) give A052852.

Programs

  • Maple
    with(PolynomialTools):
    p := n -> (n+2)!*hypergeom([-n],[3],x)/2:
    seq(CoefficientList(simplify(p(n)), x), n=0..9); # Peter Luschny, Apr 08 2015
  • Mathematica
    Flatten[Table[((-1)^m)*n!*Binomial[n+2,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", ");); print(););} \\ Michel Marcus, May 06 2014
    
  • PARI
    row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ Michel Marcus, Feb 06 2021
    
  • Python
    import math
    f=math.factorial
    def C(n,r):return f(n)//f(r)//f(n-r)
    i=0
    for n in range(16):
        for m in range(n+1):
            i += 1
            print(i,((-1)**m)*f(n)*C(n+2,n-m)//f(m)) # Indranil Ghosh, Feb 24 2017
    
  • Python
    from functools import cache
    @cache
    def T(n, k):
        if k < 0 or k > n: return 0
        if k == n: return (-1)**n
        return (n + k + 2) * T(n-1, k) - T(n-1, k-1)
    for n in range(7): print([T(n,k) for k in range(n + 1)])
    # Peter Luschny, Mar 25 2024

Formula

T(n, m) = ((-1)^m)*n!*binomial(n+2, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^3), m >= 0.
n!*L(n,2,x) = (n+2)!*hypergeom([-n],[3],x)/2. - Peter Luschny, Apr 08 2015
From Werner Schulte, Mar 24 2024: (Start)
T(n, k) = (n+k+2) * T(n-1, k) - T(n-1, k-1) with initial values T(0, 0) = 1 and T(i, j) = 0 if j < 0 or j > i.
T = T^(-1), i.e., T is matrix inverse of T. (End)

A348129 Number T(n,k) of ways to place k nonattacking queens on an n X n board; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 1, 9, 8, 0, 1, 16, 44, 24, 2, 1, 25, 140, 204, 82, 10, 1, 36, 340, 1024, 982, 248, 4, 1, 49, 700, 3628, 7002, 4618, 832, 40, 1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92, 1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352, 1, 100, 3480, 54400, 412596, 1535440, 2716096, 2119176, 636524, 56832, 724
Offset: 0

Views

Author

Alois P. Heinz, Oct 01 2021

Keywords

Examples

			T(3,2) = 8:
  .-----. .-----. .-----. .-----. .-----. .-----. .-----. .-----.
  |Q . .| |Q . .| |. . Q| |. . Q| |. . .| |. Q .| |. Q .| |. . .|
  |. . Q| |. . .| |. . .| |Q . .| |Q . .| |. . .| |. . .| |. . Q|
  |. . .| |. Q .| |. Q .| |. . .| |. . Q| |. . Q| |Q . .| |Q . .|
  `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´.
Triangle T(n,k) begins:
  1;
  1,  1;
  1,  4,    0;
  1,  9,    8,     0;
  1, 16,   44,    24,      2;
  1, 25,  140,   204,     82,     10;
  1, 36,  340,  1024,    982,    248,      4;
  1, 49,  700,  3628,   7002,   4618,    832,     40;
  1, 64, 1288, 10320,  34568,  46736,  22708,   3192,    92;
  1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352;
  ...
		

Crossrefs

Main diagonal gives A000170.
Row sums give A287227.
T(2n,n) gives A348130.

A089231 Triangular array A066667 or A008297 unsigned and transposed.

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 1, 12, 36, 24, 1, 20, 120, 240, 120, 1, 30, 300, 1200, 1800, 720, 1, 42, 630, 4200, 12600, 15120, 5040, 1, 56, 1176, 11760, 58800, 141120, 141120, 40320, 1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880
Offset: 1

Views

Author

Philippe Deléham, Dec 10 2003

Keywords

Comments

Row sums: A000262.
T(n, k) is also the number of nilpotent partial one-one bijections (of an n-element set) of height k (height(alpha) = |Im(alpha)|). - Abdullahi Umar, Sep 14 2008
T(n, k) is also the number of acyclic directed graphs on n labeled nodes with k-1 edges with all indegrees and outdegrees at most 1. - Felix A. Pahl, Dec 25 2012
For n > 1, the n-th derivative of exp(1/x) is of the form (exp(1/x)/x^(2*n))*(P(n-1,x)) where P(n-1,x) is a polynomial of degree n-1 with n terms. The term of degree k in P(n-1,x) has a coefficient given by T(n-1,k). Example: The third derivative of exp(1/x) is (exp(1/x)/x^6)*(1+6x+6x^2) and the 3rd row of this triangle is 1, 6, 6, which corresponds to this coefficients of the polynomial 1+6x+6x^2. - Derek Orr, Nov 06 2014
For another context for this array see the Callan (2008) article. - Ron L.J. van den Burg, Dec 12 2021

Examples

			1;
1,  2;
1,  6,    6;
1, 12,   36,    24;
1, 20,  120,   240,    120;
1, 30,  300,  1200,   1800,    720;
1, 42,  630,  4200,  12600,  15120,    5040;
1, 56, 1176, 11760,  58800, 141120,  141120,   40320;
1, 72, 2016, 28224, 211680, 846720, 1693440, 1451520, 362880;
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 203.

Crossrefs

Cf. A000262 (row sums), A008297, A066667, A144084, row mirror of A105278.

Programs

  • Maple
    P := n -> simplify(hypergeom([-n,-n+1],[],1/t));
    seq(print(seq(coeff(expand(t^k*P(k)),t,k-j+1),j=1..k)),k=1..n); # Peter Luschny, Oct 29 2014
  • Mathematica
    Table[(Binomial[n - 1, k - 1] Binomial[n, k - 1]/k) k!, {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Jul 04 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n,k)/(n-k+1)!, ", ");); print(););} \\ Michel Marcus, Jan 12 2016

Formula

T(n, k) = A001263(n, k)*k!; A001263 = triangle of Narayana.
T(n, k) = C(n, n-k+1)*(n-1)!/(n-k)! = Sum_{i=n-k+1..n} |S1(n, i)*S2(i, n-k+1)| , with S1, S2 the Stirling numbers.
From Derek Orr, Mar 12 2015: (Start)
Each row represents a polynomial:
P(1,x) = 1;
P(2,x) = 1 + 2x;
P(3,x) = 1 + 6x + 6x^2;
P(4,x) = 1 + 12x + 36x^2 + 24x^3;
...
They are related through P(n+1,x) = x^2*P'(n,x) - (1+2*n*x)*P(n,x) with P(1,x) = 1.
(End)
From Peter Bala, Jul 04 2016: (Start)
Working with an offset of 0:
G.f.: exp(x*t)*I_1(2*sqrt(x)) = 1 + (1 + 2*t)*x/(1!*2!) + (1 + 6*t + 6*t^2)*x^2/(2!*3!) + (1 + 12*t + 36*t^2 + 24*t^3)*x^3/(3!*4!) + ..., where I_1(x) = Sum_{n >= 0} (x/2)^(2*n)/(n!*(n+1)!) is a modified Bessel function of the first kind.
The row polynomials R(n,t) satisfy R(n,t + u) = Sum_{k = 0..n} T(n,k)*t^k*R(n-k,u).
R(n,t) = 1 + Sum_{k = 0..n-1} (-1)^(n-k+1)*(n+1)!/(k+1)!* binomial(n,k)*t^(n-k)*R(k,t). Cf. A144084. (End)
From Peter Bala, Oct 05 2019: (Start)
The following formulas use a column index k starting at 0:
E.g.f.: exp(x/(1 - t*x)) - 1 = x + (1 + 2*t)*x^2/2! + (1 + 6*t + 6*t^2)*x^3/3! + ....
Recurrence for row polynomials: R(n+1,t) = (1 + 2*n*t)R(n,t) - n*(n-1)*t^2*R(n-1,t), with R(1,t) = 1 and R(2,t) = 1 + 2*t.
R(n+1,t) equals the numerator polynomial of the finite continued fraction 1 + n*t/(1 + n*t/(1 + (n-1)*t/(1 + (n-1)*t/(1 + ... + 2*t/(1 + 2*t/(1 + t/(1 + t/(1)))))))). The denominator polynomial is the n-th row polynomial of A144084. (End)
T(n,k) = A105278(n,n-k). - Ron L.J. van den Burg, Dec 12 2021

Extensions

StackExchange link added by Felix A. Pahl, Dec 25 2012

A179058 Number of non-attacking placements of 3 rooks on an n X n board.

Original entry on oeis.org

0, 0, 6, 96, 600, 2400, 7350, 18816, 42336, 86400, 163350, 290400, 490776, 794976, 1242150, 1881600, 2774400, 3995136, 5633766, 7797600, 10613400, 14229600, 18818646, 24579456, 31740000, 40560000, 51333750, 64393056, 80110296
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Comments

Also the number of 3-cycles in the n X n rook complement graph. - Eric W. Weisstein, Sep 05 2017
Also the number of 6-cycles in the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Dec 07 2023
Essentially the same as A303212. - Eric W. Weisstein, Dec 06 2023

Crossrefs

Column k=3 of A144084.
Cf. A163102 (2 rooks), A179059 (4 rooks).
Cf. A291910 (4-cycles), A291911 (5-cycles), A291912 (6-cycles).

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Sep 05 2017 *)
    Table[3! Binomial[n, 3]^2, {n, 20}]
    3! Binomial[Range[20], 3]^2
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 6, 96, 600, 2400, 7350}, 20]
    CoefficientList[Series[-((6 x^2 (1 + 9 x + 9 x^2 + x^3))/(-1 + x)^7), {x, 0, 20}], x]
    (* End *)
    a[n_] := If[n<3, 0, Coefficient[n!*LaguerreL[n, x], x, n-3] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 3!*binomial(n, 3)^2; \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 3!*binomial(n, 3)^2.
a(n) = (n^2*(2-3*n+n^2)^2)/6. - Colin Barker, Jan 08 2013
G.f.: -6*x^3*(x+1)*(x^2+8*x+1) / (x-1)^7. - Colin Barker, Jan 08 2013
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Eric W. Weisstein, Sep 05 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=3} 1/a(n) = 3*Pi^2/2 - 117/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = 21/8 - Pi^2/4. (End)

A066324 Number of endofunctions on n labeled points constructed from k rooted trees.

Original entry on oeis.org

1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1

Views

Author

Christian G. Bower, Dec 14 2001

Keywords

Comments

T(n,k) = number of endofunctions with k recurrent elements. - Mitch Harris, Jul 06 2006
The sum of row n is n^n, for any n. Basically the same sequence arises when studying random mappings (see A243203, A243202). - Stanislav Sykora, Jun 01 2014

Examples

			Triangle T(n,k) begins:
       1;
       2,      2;
       9,     12,      6;
      64,     96,     72,     24;
     625,   1000,    900,    480,   120;
    7776,  12960,  12960,   8640,  3600,   720;
  117649, 201684, 216090, 164640, 88200, 30240, 5040;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.

Crossrefs

Column 1: A000169.
Main diagonal: A000142.
T(n, n-1): A062119.
Row sums give A000312.

Programs

  • Maple
    T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 22 2012
  • Mathematica
    f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
  • PARI
    T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011

Formula

T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.
E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.
From Peter Bala, Sep 30 2011: (Start)
Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.
Removing a factor of n from the n-th row entries results in A122525 in row reversed form.
(End)
Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - Geoffrey Critzer, Aug 19 2013
Sum_{k=1..n} k * T(n,k) = A063169(n). - Alois P. Heinz, Dec 15 2021

A105219 a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^2.

Original entry on oeis.org

0, 1, 8, 63, 544, 5225, 55656, 653023, 8379008, 116780049, 1757211400, 28394129951, 490371506208, 9013522796473, 175679564492264, 3618800515187775, 78547755741723136, 1791704327280481313, 42846080320725932808, 1071798626271975328639, 27989931083161219661600
Offset: 0

Views

Author

Miklos Kristof, Apr 13 2005

Keywords

Comments

If the e.g.f. of n^2 is E(x) and a(n) = Sum_{k=0..n} C(n,k)^2*(n-k)!*k^2, then the e.g.f. of a(n) is E(x/(1-x))/(1-x). (Thanks to Vladeta Jovovic for help.)
a(n) is the total number of edges in all matchings of the labeled complete bipartite graph K_n,n. Cf. A144084 for other interpretations. - Geoffrey Critzer, Nov 17 2021

Examples

			b(n) = 0,1,4,9,16,25,36,49,64,...
a(3) = C(3,0)^2*3!*b(0) + C(3,1)^2*2!*b(1) + C(3,2)^2*1!*b(2) + C(3,3)^2*0!*b(3) = 1*6*0 + 9*2*1 + 9*1*4 + 1*1*9 = 0 + 18 + 36 + 9 = 63.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do b[n]:=n^2 od: seq(add(binomial(n,k)^2*(n-k)!*b[k], k=0..n), n=0..30);
    seq(`if`(n=0,0,simplify(n!*LaguerreL(n-1,2,-1))),n=0..17); # Peter Luschny, Apr 11 2015
  • Mathematica
    CoefficientList[Series[(x/(1-x)^2+x^2/(1-x)^3)*E^(x/(1-x)), {x, 0, 20}], x]* Table[n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

E.g.f.: (x/(1-x)^2+x^2/(1-x)^3)*exp(x/(1-x)).
a(n) = n^2*A002720(n-1) for n>=1 [Riordan]. - N. J. A. Sloane, Jan 10 2018
a(n) = (n+1)!*(2*L(n,-1)-L(n+1,-1)) where L(n,x) is the n-th Laguerre polynomial. - Peter Luschny, Jan 19 2012
Recurrence: a(n) = 2*(n+2)*a(n-1) - (n^2+4*n-4)*a(n-2) + 2*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+5/4)/sqrt(2)*(1-17/(48*sqrt(n))). - Vaclav Kotesovec, Oct 17 2012
a(n) = n!*L(n-1,2,-1) for n>=1 where L(n,b,x) is the n-th generalized Laguerre polynomial. - Peter Luschny, Apr 11 2015
a(n) = Sum_{k=0...n} A144084(n,k)*k. - Geoffrey Critzer, Nov 17 2021
a(n) = Sum_{k=0..n} (n-k) * A206703(n,k). - Alois P. Heinz, Feb 19 2022
a(n) = Sum_{k=1..n} k*k!*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025

A295383 a(n) = (2*n)! * [x^(2*n)] (-x/(1 - x))^n/((1 - x)*n!).

Original entry on oeis.org

1, -4, 72, -2400, 117600, -7620480, 614718720, -59364264960, 6678479808000, -857813628672000, 123868287980236800, -19863969090648883200, 3502679882984419737600, -673592285189311488000000, 140299650258002307072000000, -31464534897861317399347200000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2017

Keywords

Crossrefs

Central terms of triangles A021009 and A021010.
Cf. A144084.

Programs

  • Magma
    R:= RealField(); [Round((-16)^n*Gamma(n+1/2)^2/(Pi(R)*Gamma(n+1) )): n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Maple
    a := n -> (-16)^n*GAMMA(n+1/2)^2/(Pi*GAMMA(n+1)):
    seq(a(n), n=0..15); # Peter Luschny, Nov 21 2017
  • Mathematica
    Table[(2 n)! SeriesCoefficient[(-x/(1 - x))^n /((1 - x) n!), {x, 0, 2 n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[2 EllipticK[-16 x]/Pi, {x, 0, nmax}], x] Range[0, nmax]!
    Table[(-16)^n*Gamma[n + 1/2]^2/(Pi*Gamma[n + 1]), {n,0,50}] (* G. C. Greubel, Feb 06 2018 *)
  • PARI
    for(n=0,30, print1(round((-16)^n*gamma(n+1/2)^2/(Pi*gamma(n+1))), ", ")) \\ G. C. Greubel, Feb 06 2018
    

Formula

E.g.f.: 2*K(-16*x)/Pi, where K() is the complete elliptic integral of the first kind.
a(n) ~ (-1)^n * 16^n * (n-1)! / Pi. - Vaclav Kotesovec, Nov 21 2017
From Peter Luschny, Nov 21 2017: (Start)
a(n) = (-16)^n*Gamma(n+1/2)^2/(Pi*Gamma(n+1)).
a(n) = (-16)^n*binomial(n-1/2,-1/2)*Gamma(n+1/2)/sqrt(Pi).
a(n) ~ (-exp(-1)*n*16)^n/sqrt(n*Pi/2). (End)
a(n) = (-1)^n*binomial(2*n,n)^2*n!. - Alois P. Heinz, Oct 02 2021
Showing 1-10 of 20 results. Next