A317714
Chessboard rectangles sequence (see Comments), also A037270 interleaved with A163102.
Original entry on oeis.org
0, 0, 1, 2, 10, 18, 45, 72, 136, 200, 325, 450, 666, 882, 1225, 1568, 2080, 2592, 3321, 4050, 5050, 6050, 7381, 8712, 10440, 12168, 14365, 16562, 19306, 22050, 25425, 28800, 32896, 36992, 41905, 46818, 52650, 58482, 65341, 72200, 80200, 88200, 97461, 106722, 117370
Offset: 1
In a 4 X 4 chessboard there are two such rectangles (for both p = q = 3) and the coordinates of their lower left vertices are a1 and b2. Therefore, a(4) = 2.
- Jinyuan Wang, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
[(5-5*(-1)^n-12*n+12*(-1)^n*n+14*n^2-6*(-1)^n*n^2-8*n^3+2*n^4)/64: n in [1..50]]; // Vincenzo Librandi, Aug 05 2018
-
CoefficientList[Series[-((x^2 (1+4 x^2+x^4))/((-1+x)^5 (1+x)^3)),{x,0,44}],x]
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 1, 2, 10, 18, 45, 72}, 80] (* Vincenzo Librandi, Aug 06 2018 *)
-
a(n) = sum(i = 1, n-1, floor(i/2)^3); \\ Jinyuan Wang, Aug 12 2019
-
n, a = 0, 0
while n < 10:
print(n,a)
n, a = n+1, a+((n+1)//2)**3 # A.H.M. Smeets, Aug 09 2019
A006331
a(n) = n*(n+1)*(2*n+1)/3.
Original entry on oeis.org
0, 2, 10, 28, 60, 110, 182, 280, 408, 570, 770, 1012, 1300, 1638, 2030, 2480, 2992, 3570, 4218, 4940, 5740, 6622, 7590, 8648, 9800, 11050, 12402, 13860, 15428, 17110, 18910, 20832, 22880, 25058, 27370, 29820, 32412, 35150, 38038, 41080, 44280
Offset: 0
For n=2, a(2)=10 since there are 10 non-monotonic functions f from {0,1,2} to {0,1,2}, namely, functions f = <f(1),f(2),f(3)> given by <0,1,0>, <0,2,0>, <0,2,1>, <1,0,1>, <1,0,2>, <1,2,0>, <1,2,1>, <2,0,1>, <2,0,2>, and <2,1,2>. - _Dennis P. Walsh_, Apr 25 2011
Let n=4, 2*n+1 = 9. Since 9 = 1+8 = 3+6 = 5+4 = 7+2, a(4) = 1*8 + 3*6 + 5*4 + 7*2 = 60. - _Vladimir Shevelev_, May 11 2012
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., Vol. 2 (1931), pp. 355-359. [Annotated scanned copy]
- Rowan Beckworth, Basic atomic information.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 25.
- N. S. S. Gu, H. Prodinger and S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat., Vol. 31 (2010), pp. 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2 at n=3.
- JBMO 2025, 29th Junior Balkan Mathematical Olympiad, Problem 4, author: Boris Mihov
- Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, Vol. 6 (1965), circa p. 82.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Dennis Walsh, Notes on finite monotonic and non-monotonic functions.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a006331 n = sum $ zipWith (*) [2*n-1, 2*n-3 .. 1] [2, 4 ..]
-- Reinhard Zumkeller, Feb 11 2012
-
[n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
A006331 := proc(n)
n*(n+1)*(2*n+1)/3 ;
end proc:
seq(A006331(n),n=0..80) ; # R. J. Mathar, Sep 27 2013
-
Table[n(n+1)(2n+1)/3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,2,10,28},50] (* Harvey P. Dale, Apr 12 2013 *)
-
a(n)=if(n<0,0,n*(n+1)*(2*n+1)/3)
A035287
Number of ways to place a non-attacking white and black rook on n X n chessboard.
Original entry on oeis.org
0, 4, 36, 144, 400, 900, 1764, 3136, 5184, 8100, 12100, 17424, 24336, 33124, 44100, 57600, 73984, 93636, 116964, 144400, 176400, 213444, 256036, 304704, 360000, 422500, 492804, 571536, 659344, 756900, 864900, 984064, 1115136, 1258884
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Leo Tavares, Illustration: Square of squares
- Wolfram Research, Hypergeometric Function 3F2, The Wolfram Functions site. [From _Johannes W. Meijer_, Jul 21 2009]
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
A144084
T(n,k) is the number of partial bijections of height k (height(alpha) = |Im(alpha)|) of an n-element set.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 9, 18, 6, 1, 16, 72, 96, 24, 1, 25, 200, 600, 600, 120, 1, 36, 450, 2400, 5400, 4320, 720, 1, 49, 882, 7350, 29400, 52920, 35280, 5040, 1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320
Offset: 0
T(3,1) = 9 because there are exactly 9 partial bijections (on a 3-element set) of height 1, namely: (1)->(1), (1)->(2), (1)->(3), (2)->(1), (2)->(2), (2)->(3), (3)->(1), (3)->(2), (3)->(3).
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 2;
1, 9, 18, 6;
1, 16, 72, 96, 24;
1, 25, 200, 600, 600, 120;
1, 36, 450, 2400, 5400, 4320, 720;
...
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
- J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995).
- Vaclav Kotesovec, Non-attacking chess pieces, 6th ed. (2013), p. 216, p. 218.
- Alois P. Heinz, Rows n = 0..140, flattened
- Wayne A. Johnson, Exponential Hilbert series of equivariant embeddings, arXiv:1804.04943 [math.RT], 2018.
- W. D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957), 13-18.
- Eric Weisstein's World of Mathematics, Clique Polynomial
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
- Eric Weisstein's World of Mathematics, Rook Complement Graph
- Eric Weisstein's World of Mathematics, Rook Graph
T(n,k) = |
A021010|. Sum of rows of T(n,k) is
A002720. T(n,n) is the order of the symmetric group on an n-element set, n!.
-
/* As triangle */ [[(Binomial(n,k)^2)*Factorial(k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jun 13 2017
-
T:= (n, k)-> (binomial(n, k)^2)*k!:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Dec 04 2012
-
Table[Table[Binomial[n, k]^2 k!,{k, 0, n}], {n, 0, 6}] // Flatten (* Geoffrey Critzer, Dec 04 2012 *)
Table[ CoefficientList[n!*LaguerreL[n, x], x] // Abs // Reverse, {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 18 2013 *)
CoefficientList[Table[n! x^n LaguerreL[n, -1/x], {n, 0, 8}], x] // Flatten (* Eric W. Weisstein, Apr 24 2017 *)
CoefficientList[Table[(-x)^n HypergeometricU[-n, 1, -(1/x)], {n, 5}],
x] // Flatten (* Eric W. Weisstein, Jun 13 2017 *)
-
T(n,k) = k! * binomial(n,k)^2 \\ Andrew Howroyd, Feb 13 2018
A036464
Number of ways to place two nonattacking queens on an n X n board.
Original entry on oeis.org
0, 0, 8, 44, 140, 340, 700, 1288, 2184, 3480, 5280, 7700, 10868, 14924, 20020, 26320, 34000, 43248, 54264, 67260, 82460, 100100, 120428, 143704, 170200, 200200, 234000, 271908, 314244, 361340, 413540, 471200, 534688, 604384
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, January 26, 2013. - _N. J. A. Sloane_, Feb 16 2013
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv:1609.00853 [math.CO], Sep 03 2016.
- V. Kotesovec, Non-attacking chess pieces
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
f:=n->n^4/2 - 5*n^3/3 + 3*n^2/2 - n/3; [seq(f(n),n=1..200)]; # N. J. A. Sloane, Feb 16 2013
-
f[k_] := 2 k; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 50}] (* A036464 *)
Table[a[n]/4, {n, 2, 50}] (* A000914 *)
(* Clark Kimberling, Dec 31 2011 *)
CoefficientList[Series[4 x^2 (2 + x) / (1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{0,0,8,44,140},50] (* Harvey P. Dale, Mar 26 2015 *)
A323541
a(n) = Product_{k=0..n} (k^3 + (n-k)^3).
Original entry on oeis.org
0, 1, 128, 59049, 51380224, 80869140625, 207351578198016, 811509810302822449, 4603095542875667038208, 36344623587588604291790241, 386644580358400000000000000000, 5395532942025804980378907333844441, 96578621213529440721046520779140759552
Offset: 0
-
m:=3; [(&*[k^m + (n-k)^m: k in [0..n]]): n in [0..15]]; // G. C. Greubel, Jan 18 2019
-
Table[Product[k^3+(n-k)^3, {k, 0, n}], {n, 0, 15}]
-
m=3; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
-
m=3; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019
A060300
a(n) = (2*n*(n+1))^2.
Original entry on oeis.org
0, 16, 144, 576, 1600, 3600, 7056, 12544, 20736, 32400, 48400, 69696, 97344, 132496, 176400, 230400, 295936, 374544, 467856, 577600, 705600, 853776, 1024144, 1218816, 1440000, 1690000, 1971216, 2286144, 2637376, 3027600, 3459600, 3936256, 4460544, 5035536, 5664400
Offset: 0
- C. Stanley Ogilvy and John T. Anderson, Excursions in Number Theory, Oxford University Press, NY, 1966, pp. 90-92.
-
[(2*n*(n+1))^2: n in [0..30]]; // Vincenzo Librandi, Nov 18 2016
-
CoefficientList[Series[16 x (1 + 4 x + x^2) / (1 - x)^5, {x, 0, 33}], x] (* Vincenzo Librandi, Nov 18 2016 *)
Table[(2n(n+1))^2,{n,0,30}] (* Harvey P. Dale, Jan 19 2019 *)
-
a(n) = { (2*n*(n + 1))^2 } \\ Harry J. Smith, Jul 03 2009
A179058
Number of non-attacking placements of 3 rooks on an n X n board.
Original entry on oeis.org
0, 0, 6, 96, 600, 2400, 7350, 18816, 42336, 86400, 163350, 290400, 490776, 794976, 1242150, 1881600, 2774400, 3995136, 5633766, 7797600, 10613400, 14229600, 18818646, 24579456, 31740000, 40560000, 51333750, 64393056, 80110296
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
- Eric Weisstein's World of Mathematics, Rook Graph.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
(* Start from Eric W. Weisstein, Sep 05 2017 *)
Table[3! Binomial[n, 3]^2, {n, 20}]
3! Binomial[Range[20], 3]^2
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 6, 96, 600, 2400, 7350}, 20]
CoefficientList[Series[-((6 x^2 (1 + 9 x + 9 x^2 + x^3))/(-1 + x)^7), {x, 0, 20}], x]
(* End *)
a[n_] := If[n<3, 0, Coefficient[n!*LaguerreL[n, x], x, n-3] // Abs];
Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
-
a(n) = 3!*binomial(n, 3)^2; \\ Andrew Howroyd, Feb 13 2018
A163274
a(n) = n^4*(n+1)^2/2.
Original entry on oeis.org
0, 2, 72, 648, 3200, 11250, 31752, 76832, 165888, 328050, 605000, 1054152, 1752192, 2798978, 4321800, 6480000, 9469952, 13530402, 18948168, 26064200, 35280000, 47064402, 61960712, 80594208, 103680000, 132031250, 166567752, 208324872
Offset: 0
-
Table[(n^4 (n+1)^2)/2,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{0,2,72,648,3200,11250,31752},30] (* Harvey P. Dale, May 07 2012 *)
-
a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
A163275
a(n) = n^5*(n+1)^2/2.
Original entry on oeis.org
0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
-
Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
-
concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
Showing 1-10 of 16 results.
Comments