A000170
Number of ways of placing n nonattacking queens on an n X n board.
Original entry on oeis.org
1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 2279184, 14772512, 95815104, 666090624, 4968057848, 39029188884, 314666222712, 2691008701644, 24233937684440, 227514171973736, 2207893435808352, 22317699616364044, 234907967154122528
Offset: 0
a(2) = a(3) = 0, since on 2 X 2 and 3 X 3 chessboards there are no solutions.
.
a(4) = 2:
+---------+ +---------+
| . . Q . | | . Q . . |
| Q . . . | | . . . Q |
| . . . Q | | Q . . . |
| . Q . . | | . . Q . |
+---------+ +---------+
a(5) = 10:
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
a(6) = 4:
+-------------+ +-------------+ +-------------+ +-------------+
| . . . . Q . | | . . . Q . . | | . . Q . . . | | . Q . . . . |
| . . Q . . . | | Q . . . . . | | . . . . . Q | | . . . Q . . |
| Q . . . . . | | . . . . Q . | | . Q . . . . | | . . . . . Q |
| . . . . . Q | | . Q . . . . | | . . . . Q . | | Q . . . . . |
| . . . Q . . | | . . . . . Q | | Q . . . . . | | . . Q . . . |
| . Q . . . . | | . . Q . . . | | . . . Q . . | | . . . . Q . |
+-------------+ +-------------+ +-------------+ +-------------+
- _Hugo Pfoertner_, Mar 17 2019
- M. Gardner, The Unexpected Hanging, pp. 190-2, Simon & Shuster NY 1969
- Jieh Hsiang, Yuh-Pyng Shieh and Yao-Chiang Chen, The cyclic complete mappings counting problems, in Problems and Problem Sets for ATP, volume 02-10 of DIKU technical reports, G. Sutcliffe, J. Pelletier and C. Suttner, eds., 2002.
- D. E. Knuth, The Art of Computer Programming, Volume 4, Pre-fascicle 5B, Introduction to Backtracking, 7.2.2. Backtrack programming. 2018.
- M. Kraitchik, The Problem of The Queens, Mathematical Recreations, 2nd ed., New York, Dover, 1953, pp. 247-256.
- Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019. See Ex. 67.
- W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York, Dover, 1987, pp. 166-172 (The Eight Queens Problem).
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1926, p. 47.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. J. Walker, An enumerative technique for a class of combinatorial problems, pp. 91-94 of Proc. Sympos. Applied Math., vol. 10, Amer. Math. Soc., 1960.
- M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
- Jordan Bell and Brett Stevens, A survey of known results and research areas for n-queens, Discrete Mathematics, Volume 309, Issue 1, Jan 06 2009, Pages 1-31.
- D. Bill, Durango Bill's The N-Queens Problem
- J. R. Bitner and E. M. Reingold, Backtrack programming techniques, Commun. ACM, 18 (1975), 651-656.
- J. R. Bitner and E. M. Reingold, Backtrack programming techniques, Commun. ACM, 18 (1975), 651-656. [Annotated scanned copy]
- Candida Bowtell and Peter Keevash, The n-queens problem, arXiv:2109.08083 [math.CO] 2021.
- P. Capstick and K. McCann, The problem of the n queens, apparently unpublished, no date (circa 1990?) [Scanned copy]
- V. Chvatal, All solutions to the problem of eight queens
- V. Chvatal, All solutions to the problem of eight queens [Cached copy, pdf format, with permission]
- Gheorghe Coserea, Solutions for n=8.
- Gheorghe Coserea, Solutions for n=9.
- Gheorghe Coserea, MiniZinc model for generating solutions.
- Matteo Fischetti and Domenico Salvagnin, Chasing First Queens by Integer Programming, 2018.
- Matteo Fischetti and Domenico Salvagnin, Finding First and Most-Beautiful Queens by Integer Programming, arXiv:1907.08246 [cs.DS], 2019.
- J. Freeman, A neural network solution to the n-queens problem, The Mathematica J., 3 (No. 3, 1993), 52-56.
- Ian P. Gent, Christopher Jefferson and Peter Nightingale, Complexity of n-Queens Completion, Journal of Artificial Intelligence Research 59 (2017), see p 816.
- Eric Grigoryan, Investigation of the Regularities in the Formation of Solutions n-Queens Problem, Modeling of Artificial Intelligence, 2018, 5(1), 3-21.
- E. Grigoryan, Linear algorithm for solution n-Queens Completion problem, arXiv:1912.05935 [cs.AI], 2019.
- James Grime and Brady Haran, The 8 Queen Problem, Numberphile video (2015).
- Michael Han, Tanya Khovanova, Ella Kim, Evin Liang, Miriam Lubashev, Oleg Polin, Vaibhav Rastogi, Benjamin Taycher, Ada Tsui and Cindy Wei, Fun with Latin Squares, arXiv:2109.01530 [math.HO], 2021.
- Kenji Kise, Takahiro Katagiri, Hiroki Honda and Toshitsugu Yuba, Solving the 24-queens Problem using MPI on a PC Cluster, Technical Report UEC-IS-2004-6, Graduate School of Information Systems, The University of Electro-Communications (2004).
- D. E. Knuth, Donald Knuth's 24th Annual Christmas Lecture: Dancing Links, Stanfordonline, Video published on YouTube, Dec 12, 2018.
- W. Kosters, n-Queens bibliography
- Vaclav Kotesovec, Non-attacking chess pieces, Sixth edition, 795 pages, Feb 02 2013 (minor update Mar 29 2016).
- Zur Luria, New bounds on the number of n-queens configurations, arXiv:1705.05225 [math.CO], 2017.
- Zur Luria, Michael Simkin, A lower bound for the n-queens problem, arXiv:2105.11431 [math.CO], 2021.
- E. Masehian, H. Akbaripour and N. Mohabbati-Kalejahi, Solving the n Queens Problem using a Tuned Hybrid Imperialist Competitive Algorithm, 2013.
- E. Masehian, H. Akbaripour and N. Mohabbati-Kalejahi, Landscape analysis and efficient metaheuristics for solving the n-queens problem, Computational Optimization and Applications, 2013; DOI 10.1007/s10589-013-9578-z.
- Nasrin Mohabbati-Kalejahi, Hossein Akbaripour and Ellips Masehian, Basic and Hybrid Imperialist Competitive Algorithms for Solving the Non-attacking and Non-dominating n -Queens Problems, Studies in Computational Intelligence Volume 577, 2015, pp 79-96. DOI 10.1007/978-3-319-11271-8_6.
- Ralph Morrison and Noah Speeter, The Gonality of Queen's Graphs, arXiv:2312.04686 [math.CO], 2023.
- Parth Nobel, Akshay Agrawal and Stephen Boyd, Computing tighter bounds on the n-queens constant via Newton’s method, arXiv:2112.03336 [math.CO], 2021.
- J. Pope and D. Sonnier, A linear solution to the n-Queens problem using vector spaces, Journal of Computing Sciences in Colleges, Volume 29 Issue 5, May 2014 Pages 77-83.
- T. B. Preußer and M. R. Engelhardt, Putting Queens in Carry Chains, No. 27, Journal of Signal Processing Systems, Volume 88, Issue 2, August 2017. (The title refers to the fact that the article discusses the case n = 27.)
- Thomas B. Preußer, Bernd Nägel and Rainer G. Spallek, Putting Queens in Carry Chains, Slides, HIPEAC WRC'09.
- E. M. Reingold, Letter to N. J. A. Sloane, Dec 27 1973
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
- Werner Florian Samayoa, Maria Liz Crespo, Sergio Carrato, Agustin Silva, and Andres Cicuttin, HyperFPGA: An Experimental Testbed for Heterogeneous Supercomputing, 2023.
- Michael Simkin, The number of n-queens configurations, arXiv:2107.13460 [math.CO], 2021.
- Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel and Sarfraz Khurshid, A Study of Symmetry Breaking Predicates and Model Counting, National University of Singapore (2020).
- Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set
- Eric Weisstein's World of Mathematics, Queen Graph
- Eric Weisstein's World of Mathematics, Queens Problem
- M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
- Wikipedia, Eight Queens Puzzle
- Cheng Zhang and Jianpeng Ma, Counting Solutions for the N-queens and Latin Square Problems by Efficient Monte Carlo Simulations, arXiv:0808.4003 [cond-mat.stat-mech], 2008.
Terms for n=21-23 computed by Sylvain PION (Sylvain.Pion(AT)sophia.inria.fr) and Joel-Yann FOURRE (Joel-Yann.Fourre(AT)ens.fr).
a(24) from Kenji KISE (kis(AT)is.uec.ac.jp), Sep 01 2004
a(25) from Objectweb ProActive INRIA Team (proactive(AT)objectweb.org), Jun 11 2005 [Communicated by Alexandre Di Costanzo (Alexandre.Di_Costanzo(AT)sophia.inria.fr)]. This calculation took about 53 years of CPU time.
a(25) has been confirmed by the NTU 25Queen Project at National Taiwan University and Ming Chuan University, led by Yuh-Pyng (Arping) Shieh, Jul 26 2005. This computation took 26613 days CPU time.
The NQueens-at-Home web site gives a different value for a(24), 226732487925864. Thanks to Goran Fagerstrom for pointing this out. I do not know which value is correct. I have therefore created a new entry,
A140393, which gives the NQueens-at-home version of the sequence. -
N. J. A. Sloane, Jun 18 2008
Added a(26) as calculated by Queens(AT)TUD [http://queens.inf.tu-dresden.de/]. -
Thomas B. Preußer, Jul 11 2009
Added a(27) as calculated by the Q27 Project [https://github.com/preusser/q27]. -
Thomas B. Preußer, Sep 23 2016
A024023
a(n) = 3^n - 1.
Original entry on oeis.org
0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0
From _Zerinvary Lajos_, Jan 14 2007: (Start)
Ternary......decimal:
0...............0
2...............2
22..............8
222............26
2222...........80
22222.........242
222222........728
2222222......2186
22222222.....6560
222222222...19682
2222222222..59048
etc...........etc.
(End)
Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors.
A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Omran Ahmadi and Robert Granger, An efficient deterministic test for Kloosterman sum zeros, Mathematics of Computation, Vol. 83, No. 285 (2014), pp. 347-363; arXiv preprint, arXiv:1104.3882 [math.NT], 2011-2012. See 1st column of Table 2, p. 9.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Michael Baake, Franz Gähler, and Uwe Grimm, Examples of Substitution Systems and Their Factors, Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
- R. Samuel Buss, Herbrand's Theorem, University of California, Logic and Computational Complexity pp. 195-209, Lecture Notes in Computer Science, vol 960. Springer.
- Jan Draisma, Tyrrell B. McAllister and Benjamin Nill, Lattice width directions and Minkowski's 3^d-theorem, SIAM J. Discrete Math., Vol. 26, No. 3 (2012), pp. 1104-1107; arXiv preprint, arXiv:0901.1375 [math.CO], Jan 10 2009.
- Alessandro Farinelli, Herbrand Universe and Herbrand Base.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Krzysztof A. Meissner, Black hole entropy in Loop Quantum Gravity, Classical and Quantum Gravity, Vol. 21, No. 22 (2004), pp. 5245--5251; arXiv preprint, arXiv:gr-qc/0407052, 2004.
- Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence b(n).
- Steven Schlicker, Roman Vasquez, and Rachel Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Wikipedia, Herbrand Structure.
- Damiano Zanardini, Computational Logic, Slides, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid, 2009-2010.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
-
a024023 = subtract 1 . a000244 -- Reinhard Zumkeller, Jun 30 2013
-
[3^n-1: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
-
3^Range[0,30]-1 (* Paolo Xausa, Jul 15 2023 *)
-
a(n)=3^n-1 \\ Charles R Greathouse IV, Sep 24 2015
-
vector(50, n, sum(k=0, n, 2^k*binomial(n-1, k))-1) \\ Altug Alkan, Oct 04 2015
-
my(x='x+O('x^100)); concat([0], Vec(2*x/(-1+x)/(-1+3*x))) \\ Altug Alkan, Oct 16 2015
A047659
Number of ways to place 3 nonattacking queens on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 24, 204, 1024, 3628, 10320, 25096, 54400, 107880, 199400, 348020, 579264, 926324, 1431584, 2148048, 3141120, 4490256, 6291000, 8656860, 11721600, 15641340, 20597104, 26797144, 34479744, 43915768, 55411720, 69312516, 86004800, 105919940
Offset: 0
- E. Landau, Naturwissenschaftliche Wochenschrift (Aug. 2 1896).
- R. P. Stanley, Enumerative Combinatorics, vol. I, exercise 15 in chapter 4 (and its solution) asks one to show the existence of a rational generating function for the number of ways of placing k non-attacking queens on an n X n chessboard.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-queens problem I. General theory, Jan 26 2013. - _N. J. A. Sloane_, Feb 16 2013
- S. Chaiken, C. R. H. Hanusa and T. Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv:1609.00853 [math.CO], Sep 03 2016.
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 11.
- Edmund Landau, Ueber das Achtdamenproblem und seine Verallgemeinerung, Naturwissenschaftliche Wochenschrift, Aug 02 1896.
- Edouard Lucas, Récréations mathématiques, Gauthier-Villars, Paris, 1882-1894, Vol. I, p. 228.
- Antal Pinter, Numerical solution of the k=3 Queens problem, 2011, P(3) at p.8-9.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
- Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S. Meel, Sarfraz Khurshid, A Study of Symmetry Breaking Predicates and Model Counting, National University of Singapore (2020).
- Index entries for linear recurrences with constant coefficients, signature (5,-8,0,14,-14,0,8,-5,1).
-
[(3*(2*n-1)*(-1)^n +4*n^6 -40*n^5 +158*n^4 -300*n^3 +264*n^2 -86*n +3)/24: n in [0..35]]; // Vincenzo Librandi, Sep 21 2015
-
f:=n-> n^6/6 - 5*n^5/3 + 79*n^4/12 - 25*n^3/2 + 11*n^2 - 43*n/12 + 1/8 + (-1)^n*(n/4 - 1/8); [seq(f(n),n=1..40)]; # N. J. A. Sloane, Feb 16 2013
-
Table[If[EvenQ[n],n (n-2)^2 (2n^3-12n^2+23n-10)/12,(n-1)(n-3) (2n^4- 12n^3+25n^2-14n+1)/12],{n,0,30}] (* or *) LinearRecurrence[ {5,-8,0,14,-14,0,8,-5,1},{0,0,0,0,24,204,1024,3628,10320},30] (* Harvey P. Dale, Nov 06 2011 *)
-
a(n)=if(n%2, (n - 1)*(n - 3)*(2*n^4 - 12*n^3 + 25*n^2 - 14*n + 1), n*(n - 2)^2*(2*n^3 - 12*n^2 + 23*n - 10))/12 \\ Charles R Greathouse IV, Feb 09 2017
The formula given in the Rivin et al. paper is wrong.
Entry improved by comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 30 2001
A061994
Number of ways to place 4 nonattacking queens on an n X n board.
Original entry on oeis.org
0, 0, 0, 0, 2, 82, 982, 7002, 34568, 131248, 412596, 1123832, 2739386, 6106214, 12654614, 24675650, 45704724, 80999104, 138170148, 227938788, 365106738, 569681574, 868289594, 1295775946, 1897176508, 2729909796
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001
- Vaclav Kotesovec, Between chessboard and computer, 1996, pp. 204-206.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Louis Azemard, Une communication de Vaclav Kotesovec, Echecs et Mathématiques, Rex Multiplex 38/1992.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 12.
- Index entries for linear recurrences with constant coefficients, signature (3,1,-9,0,12,7,-15,-16,16,15,-7,-12,0,9,-1,-3,1).
-
CoefficientList[Series[x^4*(2 +76*x +734*x^2 +3992*x^3 +13318*x^4 +29356*x^5 +46304*x^6 +53580*x^7 +46890*x^8 +29768*x^9 +13522*x^10 +3804*x^11 +574*x^12)/((1-x)^3*(1-x^2)^4*(1-x^3)^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 12 2013 *)
LinearRecurrence[{3,1,-9,0,12,7,-15,-16,16,15,-7,-12,0,9,-1,-3,1}, {0,0,0,0,2,82, 982,7002,34568,131248,412596,1123832,2739386,6106214,12654614,24675650, 45704724}, 40] (* Harvey P. Dale, Jan 21 2017 *)
-
def p(x): return x^4*(2 +76*x +734*x^2 +3992*x^3 +13318*x^4 +29356*x^5 +46304*x^6 +53580*x^7 +46890*x^8 +29768*x^9 +13522*x^10 +3804*x^11 +574*x^12)/((1-x)^3*(1-x^2)^4*(1-x^3)^2)
def A061994_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( p(x) ).list()
A061994_list(40) # G. C. Greubel, Apr 30 2022
A172123
Number of ways to place 2 nonattacking bishops on an n X n board.
Original entry on oeis.org
0, 4, 26, 92, 240, 520, 994, 1736, 2832, 4380, 6490, 9284, 12896, 17472, 23170, 30160, 38624, 48756, 60762, 74860, 91280, 110264, 132066, 156952, 185200, 217100, 252954, 293076, 337792, 387440, 442370, 502944, 569536, 642532
Offset: 1
- E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T Zaslavsky, S Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[n*(n-1)*(3*n^2-n+2)/6: n in [1..40]]; // Vincenzo Librandi, Apr 29 2013
-
I:=[0, 4, 26, 92, 240]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 29 2013
-
CoefficientList[Series[-2 x (x+1)(x+2)/(x-1)^5, {x, 0, 80}], x] (* Vincenzo Librandi, Apr 29 2013 *)
-
a(n)=n*(n-1)*(3*n^2-n+2)/6 \\ Charles R Greathouse IV, Jun 16 2015
A172225
Number of ways to place 2 nonattacking wazirs on an n X n board.
Original entry on oeis.org
0, 2, 24, 96, 260, 570, 1092, 1904, 3096, 4770, 7040, 10032, 13884, 18746, 24780, 32160, 41072, 51714, 64296, 79040, 96180, 115962, 138644, 164496, 193800, 226850, 263952, 305424, 351596, 402810, 459420, 521792, 590304
Offset: 1
- Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p. 829.
-
I:=[0, 2, 24, 96, 260]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
[n*(n-1)*(n^2+n-4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
Table[n (n - 1) (n^2 + n - 4) / 2, {n, 40}] (* Vincenzo Librandi, Apr 30 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{0,2,24,96,260},40] (* Harvey P. Dale, Jun 04 2023 *)
A172132
Number of ways to place 2 nonattacking knights on an n X n board.
Original entry on oeis.org
0, 6, 28, 96, 252, 550, 1056, 1848, 3016, 4662, 6900, 9856, 13668, 18486, 24472, 31800, 40656, 51238, 63756, 78432, 95500, 115206, 137808, 163576, 192792, 225750, 262756, 304128, 350196, 401302, 457800, 520056, 588448, 663366
Offset: 1
- E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63
-
I:=[0, 6, 28, 96, 252]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
[(n-1)*(n+4)*(n^2-3*n+4)/2: n in [1..40]]; // Vincenzo Librandi, Apr 30 2013
-
Table[(n-1)(n+4)(n^2 -3n +4)/2, {n, 40}] (* Vincenzo Librandi, Apr 30 2013 *)
-
[(n-1)*(n+4)*(n^2-3*n+4)/2 for n in (1..40)] # G. C. Greubel, Apr 18 2022
A348129
Number T(n,k) of ways to place k nonattacking queens on an n X n board; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 0, 1, 9, 8, 0, 1, 16, 44, 24, 2, 1, 25, 140, 204, 82, 10, 1, 36, 340, 1024, 982, 248, 4, 1, 49, 700, 3628, 7002, 4618, 832, 40, 1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92, 1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352, 1, 100, 3480, 54400, 412596, 1535440, 2716096, 2119176, 636524, 56832, 724
Offset: 0
T(3,2) = 8:
.-----. .-----. .-----. .-----. .-----. .-----. .-----. .-----.
|Q . .| |Q . .| |. . Q| |. . Q| |. . .| |. Q .| |. Q .| |. . .|
|. . Q| |. . .| |. . .| |Q . .| |Q . .| |. . .| |. . .| |. . Q|
|. . .| |. Q .| |. Q .| |. . .| |. . Q| |. . Q| |Q . .| |Q . .|
`-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´ `-----´.
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 0;
1, 9, 8, 0;
1, 16, 44, 24, 2;
1, 25, 140, 204, 82, 10;
1, 36, 340, 1024, 982, 248, 4;
1, 49, 700, 3628, 7002, 4618, 832, 40;
1, 64, 1288, 10320, 34568, 46736, 22708, 3192, 92;
1, 81, 2184, 25096, 131248, 310496, 312956, 119180, 13848, 352;
...
A172517
Number of ways to place 2 nonattacking queens on an n X n toroidal board.
Original entry on oeis.org
0, 0, 0, 32, 100, 288, 588, 1152, 1944, 3200, 4840, 7200, 10140, 14112, 18900, 25088, 32368, 41472, 51984, 64800, 79380, 96800, 116380, 139392, 165000, 194688, 227448, 264992, 306124, 352800, 403620, 460800, 522720, 591872, 666400, 749088, 837828
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
CoefficientList[Series[- 4 x^3 (x^3 + 6 x^2 + 9 x + 8) / ((x - 1)^5 (x + 1)^3), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2013 *)
LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{0,0,0,32,100,288,588,1152},40] (* Harvey P. Dale, Sep 22 2015 *)
A172141
Number of ways to place 2 nonattacking nightriders on an n X n board.
Original entry on oeis.org
0, 6, 28, 96, 240, 518, 980, 1712, 2784, 4310, 6380, 9136, 12688, 17206, 22820, 29728, 38080, 48102, 59964, 73920, 90160, 108966, 130548, 155216, 183200, 214838, 250380, 290192, 334544, 383830, 438340, 498496, 564608, 637126
Offset: 1
- Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Christopher R. H. Hanusa, T. Zaslavsky, and S. Chaiken, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853, a12016
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
-
[(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)): n in [1..40]]; // G. C. Greubel, Apr 21 2022
-
CoefficientList[Series[2*x*(3+2*x+x^2)*(1+x+2*x^2)/((1-x)^5*(1+x)^2), {x,0,40}], x] (* Vincenzo Librandi, May 27 2013 *)
-
[(n/12)*(3*(-1)^n -(11 -18*n +10*n^2 -6*n^3)) for n in (1..40)] # G. C. Greubel, Apr 21 2022
Showing 1-10 of 18 results.
Comments