A265014 Triangle read by rows: T(n,k) = number of neighbors in n-dimensional lattice for generalized neighborhood given with parameter k.
2, 4, 8, 6, 18, 26, 8, 32, 64, 80, 10, 50, 130, 210, 242, 12, 72, 232, 472, 664, 728, 14, 98, 378, 938, 1610, 2058, 2186, 16, 128, 576, 1696, 3488, 5280, 6304, 6560, 18, 162, 834, 2850, 6882, 12258, 16866, 19170, 19682, 20, 200, 1160, 4520, 12584, 26024, 41384, 52904, 58024, 59048
Offset: 1
Examples
Triangle: n\k 1 2 3 4 5 6 7 8 -------------------------------------------- 1 2 2 4 8 3 6 18 26 4 8 32 64 80 5 10 50 130 210 242 6 12 72 232 472 664 728 7 14 98 378 938 1610 2058 2186 8 16 128 576 1696 3488 5280 6304 6560 ... For instance, for n=3, in a cube: k=1 corresponds to von Neumann's neighborhood with 6 neighbors situated on facets and given with offsets {(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1)}; k=2 corresponds to 18 neighbors situated on facets and sides and given with offsets {(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1),(-1,-1,0),(-1,0,-1),(0,-1,-1),(-1,0,1),(-1,1,0),(0,-1,1),(0,1,-1),(1,0,-1),(1,-1,0),(1,1,0),(1,0,1),(0,1,1)}; k=3 corresponds to Moore's neighborhood with 26 neighbors situated on facets, sides and corners given with offsets {(-1,0,0),(1,0,0),(0,-1,0),(0,1,0),(0,0,-1),(0,0,1),(-1,-1,0),(-1,0,-1),(0,-1,-1),(-1,0,1),(-1,1,0),(0,-1,1),(0,1,-1),(1,0,-1),(1,-1,0),(1,1,0),(1,0,1),(0,1,1),(-1,-1,-1),(1,-1,-1),(-1,1,-1),(1,1,-1),(-1,-1,1),(1,-1,1),(-1,1,1),(1,1,1)}.
Links
- D. A. Zaitsev, Generator of lattices
- Dmitry Zaitsev, k-neighborhood for Cellular Automata, arXiv preprint arXiv:1605.08870 [cs.DM], 2016.
- D. A. Zaitsev, A generalized neighborhood for cellular automata, Theoretical Computer Science, 666 (2017), 21-35.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := 3^n - 2^(k+1) Binomial[n, k+1] Hypergeometric2F1[1, k-n+1, k+2, -2] - 1; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 26 2018 *)
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(r=1, k, 2^r*binomial(n,r)), ", ");); print(););} \\ Michel Marcus, Dec 16 2015
Formula
T(n,k) = Sum_{r=1..k} 2^r*binomial(n,r).
Recurrence: T(n,k) = T(n-1,k-1)-2T(n-1,k-2)+T(n-1,k)+T(n,k-1), T(n,1) = 2n, T(n,n) = 3^n-1.
Extensions
More terms from Michel Marcus, Dec 16 2015
Comments