cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Louis Marin

Louis Marin's wiki page.

Louis Marin has authored 1 sequences.

A378947 Number of row states in an automaton for the enumeration of the number of fixed polyominoes with bounding box of width n.

Original entry on oeis.org

1, 2, 6, 16, 40, 99, 247, 625, 1605, 4178, 11006, 29292, 78652, 212812, 579672, 1588242, 4374282, 12103404, 33628824, 93786966, 262450878, 736710357, 2073834417, 5853011847, 16558618507, 46949351272, 133390812252, 379708642286, 1082797114046, 3092894319075, 8848275403639
Offset: 0

Author

Louis Marin, Dec 11 2024

Keywords

Comments

The states track the non-crossing partitions of the connected components and whether each side of the bounding rectangle has been reached.
a(n) is an upper bound on the order of the generating function of row n of A292357.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 6][n+1],
           ((3*n^2+2*n-12)*a(n-1)+(n^2-13*n+15)*a(n-2)
            -3*(n-3)*(n-1)*a(n-3))/((n-2)*(n+3)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 20 2024
  • Mathematica
    a[n_] := a[n] = If[n < 3, {1, 2, 6}[[n+1]],
       ((3*n^2 + 2*n - 12)*a[n-1] + (n^2 - 13*n + 15)*a[n-2]
       - 3*(n-3)*(n-1)*a[n-3])/((n-2)*(n+3))];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 26 2025, after Alois P. Heinz *)
  • PARI
    b(n) = (1 + (hammingweight(bitxor(n, n>>1)))) >> 1;
    C(n) = binomial(2*n, n)/(n+1);
    a(n) = 1 + sum(m=1, 2^n-1, C(b(m)) * 2^((m % 2)==0) * 2^(m<2^(n-1))); \\ Michel Marcus, Dec 12 2024
    
  • PARI
    a(n) = {1 + sum(k=1, (n+1)\2, (binomial(n+1, 2*k)+2*binomial(n,2*k)+binomial(n-1,2*k))*binomial(2*k, k)/(k+1))} \\ Andrew Howroyd, Dec 17 2024

Formula

a(n) = 1 + Sum_{m=1..2^n-1} A000108(A069010(m)) * 2^[m=0 mod 2] * 2^[m<2^(n-1)], where [] is the Iverson bracket.
From Andrew Howroyd, Dec 17 2024: (Start)
a(n) = 1 + Sum_{k=1..floor((n+1)/2)} (binomial(n+1, 2*k) + 2*binomial(n,2*k) + binomial(n-1,2*k)) * binomial(2*k, k)/(k+1).
a(n) = A001006(n+1) + 2*A001006(n) + A001006(n-1) - 3 for n > 0. (End)

Extensions

More terms from Michel Marcus, Dec 12 2024
a(26) onwards from Andrew Howroyd, Dec 17 2024