cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jason Bard

Jason Bard's wiki page.

Jason Bard has authored 276 sequences. Here are the ten most recent ones:

A386440 Decimal expansion of Sum_{k>=1} 1/(8k)!.

Original entry on oeis.org

0, 0, 0, 0, 2, 4, 8, 0, 1, 5, 8, 7, 3, 4, 9, 3, 8, 2, 0, 7, 4, 9, 1, 2, 7, 8, 7, 1, 7, 7, 8, 4, 7, 0, 6, 9, 2, 9, 5, 2, 3, 8, 2, 8, 0, 5, 9, 6, 8, 5, 1, 5, 6, 7, 8, 8, 2, 6, 8, 6, 4, 6, 2, 5, 3, 3, 5, 7, 8, 9, 6, 6, 5, 9, 6, 3, 1, 8, 9, 3, 2, 4, 7, 7, 1, 8, 8, 5, 9, 8, 7, 0, 5, 2, 5, 1, 8, 4, 8, 1, 1, 4, 9, 7
Offset: 0

Author

Jason Bard, Aug 25 2025

Keywords

Examples

			0.00002480158734938207491278717784706929523828059685156788...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-1 + HypergeometricPFQ[{}, Range[1, 7]/8, 2^-24], 10, 100][[1]]

A387206 Decimal expansion of Sum_{k>=1} (-1)^(k+1)/(6*k-5)^6 + (-1)^(k+1)/(6*k-1)^6.

Original entry on oeis.org

1, 0, 0, 0, 0, 5, 5, 1, 6, 0, 7, 9, 4, 8, 6, 9, 4, 6, 3, 4, 7, 3, 7, 5, 6, 6, 1, 8, 8, 4, 4, 9, 2, 5, 6, 2, 5, 8, 7, 8, 1, 9, 7, 6, 9, 3, 6, 5, 2, 0, 6, 5, 1, 8, 5, 6, 3, 1, 0, 1, 8, 2, 5, 7, 0, 6, 1, 3, 0, 3, 5, 7, 9, 3, 8, 0, 0, 9, 9, 7, 1, 9, 2, 0, 7, 8, 2, 1, 6, 6, 6, 2, 7, 3, 2, 5, 0, 6, 8, 9
Offset: 1

Author

Jason Bard, Aug 21 2025

Keywords

Examples

			1.000055160794869463473756618844925625878197693652065...
		

Programs

  • Maple
    c:= Re(sum((-1)^(k+1)/(6*k-5)^6+(-1)^(k+1)/(6*k-1)^6, k=1..infinity)):
    evalf(c, 140);  # Alois P. Heinz, Aug 21 2025
  • Mathematica
    RealDigits[(1/358318080)*(PolyGamma[5, 1/12] + PolyGamma[5, 5/12] - PolyGamma[5, 7/12] - PolyGamma[5, 11/12]), 10, 100][[1]]
  • PARI
    (365/1492992) * (zetahurwitz(6, 1/4) - zetahurwitz(6, 3/4))

Formula

Equals (1/358318080) * (PolyGamma(5, 1/12) + PolyGamma(5, 5/12) - PolyGamma(5, 7/12) - PolyGamma(5, 11/12)).
Equals (73/35831808) * (PolyGamma(5, 1/4) - PolyGamma(5, 3/4)). - Amiram Eldar, Aug 22 2025

A386522 Decimal expansion of the number of radians in a minute of arc.

Original entry on oeis.org

0, 0, 0, 2, 9, 0, 8, 8, 8, 2, 0, 8, 6, 6, 5, 7, 2, 1, 5, 9, 6, 1, 5, 3, 9, 4, 8, 4, 6, 1, 4, 1, 4, 7, 6, 8, 7, 8, 5, 5, 7, 3, 8, 1, 1, 9, 8, 1, 4, 2, 3, 6, 2, 0, 9, 0, 9, 3, 4, 9, 5, 3, 1, 9, 0, 6, 6, 9, 5, 1, 6, 8, 1, 8, 5, 7, 6, 7, 2, 4, 1, 5, 7, 3, 9, 4, 7, 0, 4, 0, 2, 6, 1, 6, 0, 5, 7, 5, 1, 5
Offset: 0

Author

Jason Bard, Aug 21 2025

Keywords

Examples

			0.00029088820866572159615394846141476878557381198142362...
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0},RealDigits[Pi/10800, 10, 100][[1]]]

Formula

Equals Pi/10800.
Equals A019685/60.

A386552 Concatenate powers of 10.

Original entry on oeis.org

1, 110, 110100, 1101001000, 110100100010000, 110100100010000100000, 1101001000100001000001000000, 110100100010000100000100000010000000, 110100100010000100000100000010000000100000000, 1101001000100001000001000000100000001000000001000000000
Offset: 0

Author

Jason Bard, Jul 25 2025

Keywords

Comments

Binary version of A045507. Base-2 representation of A164894.
Concatenate first A000217(n+1) terms of A010054.

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<0, 0, parse(cat(a(n-1), 10^n)))
        end:
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 28 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n - 1]*10^(n+1) + 10^n; Table[a[n], {n, 0, 9}]
  • Python
    def A386552(n): return 10**n*sum(10**(k*((n<<1)-k+1)>>1) for k in range(n+1)) # Chai Wah Wu, Aug 05 2025

Formula

a(n) = Sum_{k=1..n+1} 10^A133082(k,n+2).
a(n) = A101305(n) + 10^A000096(n).
For n >= 1, a(n) = 10^(n+1)*a(n-1)+10^n.
Number of digits in a(n) is A000217(n+1).

A386407 a(n) = -floor(log(Integral_{x=2n^3+2n+2...oo} n^(-x^3) dx)/log(n)).

Original entry on oeis.org

10658, 238337, 2628081, 17984736, 88716544, 345948416, 1131366096, 3228667360, 8266914656, 19378404864, 42216896176, 86468159456, 168013851840, 311941643776, 556629367184, 959168691936, 1602434480416, 2604149515520, 4128340746096, 6399632545504
Offset: 2

Author

Jason Bard, Jul 20 2025

Keywords

Comments

-a(10) = -2022^3 - 8 was the solution to the final problem of the 2022 MIT Integral Bee Finals; see MIT link.

Crossrefs

Cf. A071568.

Programs

  • Mathematica
    Table[-Floor[(Log[Gamma[1/3, 8 (n^3 + n + 1)^3*Log[n]]] - Log[3] - (1/3) Log[Log[n]])/Log[n]], {n, 2, 36}]

Formula

a(n) = -floor((log(Gamma(1/3, 8 * log(n) * (n^3 + n + 1)^3)) - log(3) - (1/3) * log(log(n))) / log(n)).

A386732 Decimal expansion of Integral_{x>=2} 1/(x^12-1) dx.

Original entry on oeis.org

0, 0, 0, 0, 4, 4, 3, 9, 4, 3, 8, 8, 3, 8, 9, 7, 3, 2, 9, 3, 1, 6, 1, 9, 7, 9, 3, 7, 0, 8, 8, 6, 1, 0, 4, 5, 9, 0, 2, 9, 4, 1, 1, 8, 5, 0, 4, 7, 6, 8, 8, 5, 1, 8, 1, 8, 5, 7, 0, 2, 5, 0, 0, 7, 5, 2, 9, 5, 8, 9, 0, 0, 4, 2, 4, 9, 5, 9, 9, 5, 3, 8, 0, 8, 1, 2, 9, 4, 5, 1, 1, 5, 5, 0, 3, 9, 2, 3, 2, 5, 1, 8, 3, 8
Offset: 0

Author

Jason Bard, Jul 31 2025

Keywords

Examples

			0.000044394388389732931619793708861045902941185047688518...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 0}, RealDigits[1/72 (-4 (3 + Sqrt[3]) Pi + 3 (4 ArcTan[2] + 2 Sqrt[3] ArcTan[5/Sqrt[3]] + 2 ArcTan[4 - Sqrt[3]] + 2 ArcTan[4 + Sqrt[3]] + Log[21] - Sqrt[3] Log[5 - 2 Sqrt[3]] + Sqrt[3] Log[5 + 2 Sqrt[3]])), 10, 100][[1]]]
    (* or *)
    Join[{0, 0, 0, 0}, RealDigits[Integrate[1/(x^12 - 1), {x, 2, Infinity}], 10, 100][[1]]]
    (* or *)
    Join[{0, 0, 0, 0}, RealDigits[1/22528*Hypergeometric2F1[11/12, 1, 23/12, 1/4096], 10, 100][[1]]]

Formula

Equals (1/22528) * hypergeometric(11/12, 1; 23/12; 1/4096).
Equals (-6*Pi - 4*sqrt(3)*Pi + 12*arctan(2) - 3*arctan(12/5) + 6*sqrt(3) * arctan(5/sqrt(3)) + 6*sqrt(3) * arctanh((2*sqrt(3))/5) + log(9261))/72.

A383463 Decimal expansion of Sum_{k>=0} 1/(16*k+1)^3.

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 9, 3, 0, 4, 8, 7, 6, 7, 5, 3, 2, 6, 1, 7, 4, 8, 1, 3, 5, 7, 9, 8, 2, 0, 3, 8, 0, 1, 9, 7, 9, 0, 2, 1, 5, 5, 2, 7, 1, 5, 6, 4, 2, 8, 6, 8, 9, 0, 8, 9, 1, 3, 9, 1, 6, 7, 0, 4, 7, 4, 6, 5, 4, 0, 3, 0, 7, 8, 6, 8, 8, 2, 4, 7, 8, 9, 8, 9, 3, 7, 7, 3, 0, 9, 2, 0, 4, 6, 7, 8, 3, 7, 8, 5, 4, 1, 8, 6, 6
Offset: 1

Author

Jason Bard, Jul 24 2025

Keywords

Examples

			1.00024930487675326174813579820380197902155271564286...
		

Programs

  • Maple
    evalf(sum(1/(16*k+1)^3, k=0..infinity), 120);  # Alois P. Heinz, Jul 26 2025
  • Mathematica
    RealDigits[-PolyGamma[2, 1/16]/8192, 10, 100][[1]]
  • PARI
    zetahurwitz(3, 1/16)/16^3 \\ Amiram Eldar, Jul 28 2025

Formula

Equals -1/8192 * PolyGamma(2, 1/16).

A384949 Decimal expansion of Sum_{k>=0} 1/(2*k+1)^9.

Original entry on oeis.org

1, 0, 0, 0, 0, 5, 1, 3, 4, 5, 1, 8, 3, 8, 4, 3, 7, 7, 2, 5, 9, 2, 8, 1, 7, 9, 0, 0, 5, 4, 2, 5, 0, 5, 0, 0, 5, 6, 7, 9, 9, 6, 9, 9, 0, 2, 4, 6, 6, 3, 8, 3, 1, 1, 4, 4, 4, 5, 9, 6, 2, 6, 3, 8, 1, 4, 4, 3, 3, 6, 2, 5, 4, 4, 5, 7, 8, 5, 5, 5, 5, 0, 5, 1, 4, 9, 4, 3, 0, 8, 2, 6, 6, 4, 0, 3, 0, 5, 8, 3
Offset: 1

Author

Jason Bard, Jul 24 2025

Keywords

Examples

			1.00005134518384377259281790054250500567996990246638...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(2*k+1)^9, k=0..infinity), 120);  # Alois P. Heinz, Jul 26 2025
  • Mathematica
    RealDigits[511*Zeta[9]/512, 10, 100][[1]]
  • PARI
    511*zeta(9)/512 \\ Amiram Eldar, Jul 28 2025

Formula

Equals 511*Zeta(9)/512 = 511/512 * A013667.
Equals Sum_{n>=0} 1/A016761(n). - Amiram Eldar, Jul 28 2025

A386358 Primes without {7, 9} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 23, 31, 41, 43, 53, 61, 83, 101, 103, 113, 131, 151, 163, 181, 211, 223, 233, 241, 251, 263, 281, 283, 311, 313, 331, 353, 383, 401, 421, 431, 433, 443, 461, 463, 503, 521, 523, 541, 563, 601, 613, 631, 641, 643, 653, 661, 683, 811, 821, 823
Offset: 1

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038615 and A038617.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 6, 8]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 7] == 0 && DigitCount[#, 10, 9] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 6, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234568"), 41))) # uses function/imports in A385776
    

A386357 Primes without {7, 8} as digits.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 23, 29, 31, 41, 43, 53, 59, 61, 101, 103, 109, 113, 131, 139, 149, 151, 163, 191, 193, 199, 211, 223, 229, 233, 239, 241, 251, 263, 269, 293, 311, 313, 331, 349, 353, 359, 401, 409, 419, 421, 431, 433, 439, 443, 449, 461, 463, 491, 499, 503
Offset: 1

Author

Jason Bard, Jul 20 2025

Keywords

Crossrefs

Intersection of A038615 and A038616.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 2, 3, 4, 5, 6, 9]];
    
  • Mathematica
    Select[Prime[Range[120]], DigitCount[#, 10, 7] == 0 && DigitCount[#, 10, 8] == 0 &]
  • PARI
    primes_with(, 1, [0, 1, 2, 3, 4, 5, 6, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("01234569"), 41))) # uses function/imports in A385776