A340108 Triangle read by rows: T(n,k) is the number of permutations of k elements from [1..n] in a circle with longest consecutive chain size less than 3, when 1 and n are considered to be consecutive, and rotations are considered to be distinct.
1, 1, 1, 1, 2, 2, 1, 3, 6, 0, 1, 4, 12, 0, 16, 1, 5, 20, 30, 80, 60, 1, 6, 30, 84, 264, 480, 456, 1, 7, 42, 168, 672, 1890, 3612, 3458, 1, 8, 56, 288, 1424, 5440, 15744, 30352, 29296, 1, 9, 72, 450, 2664, 12870, 50004, 145656, 283104, 275166, 1, 10, 90, 660, 4560, 26640, 130080, 508060, 1488960, 2909700, 2843980
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 1 2 2 3 1 3 6 0 4 1 4 12 0 16 5 1 5 20 30 80 60 6 1 6 30 84 264 480 456 7 1 7 42 168 672 1890 3612 3458 8 1 8 56 288 1424 5440 15744 30352 29296
Formula
T(n,k) = n*(5*A340106(n-1,k-1) - 2*Z(n,k) - Z(n-1,k-1) - 2*S(n,k) - 2*S(n-2,k-2)) except for T(n,0)=1, where S(n,k) = 2*A340106(n-1,k-1) - 2*A340106(n-2,k-2) + S(n-3,k-3), S(n,k)=0 for k <= 0, Z(n,k) = 2*A340106(n-1,k-1) - S(n,k) - V(n-1,k-1), Z(n,k)=0 for k <= 0, V(n,k) = Z(n-1,k-1) - V(n-1,k-1), V(n,k)=0 for k <= 0 except for V(2,2)=2.
Extensions
Terms of column 2 corrected by Xiangyu Chen, Aug 19 2022
Comments