A340107 Triangle read by rows: T(n,k) is the number of permutations of k elements from [1..n] with longest consecutive chain size less than 3, when 1 and n are considered to be consecutive.
1, 1, 1, 1, 2, 2, 1, 3, 6, 0, 1, 4, 12, 16, 16, 1, 5, 20, 50, 90, 80, 1, 6, 30, 108, 300, 552, 516, 1, 7, 42, 196, 742, 2100, 3990, 3794, 1, 8, 56, 320, 1536, 5888, 16976, 32656, 31456, 1, 9, 72, 486, 2826, 13680, 53046, 154350, 299628, 290970, 1, 10, 90, 700, 4780, 27960, 136380, 532340, 1559040, 3044900, 2974380
Offset: 0
Examples
n\k 0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 1 2 2 3 1 3 6 0 4 1 4 12 16 16 5 1 5 20 50 90 80 6 1 6 30 108 300 552 516 7 1 7 42 196 742 2100 3990 3794 8 1 8 56 320 1536 5888 16976 32656 31456
Formula
T(n,k) = n*(A340106(n-1,k-1) - S(n-2,k-2)) except for T(n,0)=1, where S(n,k) = 2*A340106(n-1,k-1) - 2*A340106(n-2,k-2) + S(n-3,k-3), S(n,k)=0 for k <= 0. [exception added by Xiangyu Chen, Aug 19 2022]
Comments