cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006002 a(n) = n*(n+1)^2/2.

Original entry on oeis.org

0, 2, 9, 24, 50, 90, 147, 224, 324, 450, 605, 792, 1014, 1274, 1575, 1920, 2312, 2754, 3249, 3800, 4410, 5082, 5819, 6624, 7500, 8450, 9477, 10584, 11774, 13050, 14415, 15872, 17424, 19074, 20825, 22680, 24642, 26714, 28899, 31200, 33620, 36162, 38829, 41624
Offset: 0

Views

Author

Keywords

Comments

a(n) is the largest number that is not the sum of distinct numbers of form kn+1, k >= 0. - David W. Wilson, Dec 11 1999
Sum of the nontriangular numbers between successive triangular numbers. 1, (2), 3, (4, 5), 6, (7, 8, 9), 10, (11, 12, 13, 14), 15, ... Sum of the terms in brackets. Or sum of n consecutive integers beginning with T(n) + 1, where T(n) = n(n+1)/2. - Amarnath Murthy, Aug 27 2005
Apparently this is also the splittance (as defined by Hammer & Simeone, 1977) of the Kneser graphs of the form K(n+3,2). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 13 2009
Row sums of triangle A159797. - Omar E. Pol, Jul 24 2009
The same results occur when one plots the points (1,3), (3,6), (6,10), (10,15), and so on, for all the triangular numbers and finds the area beneath. Take three consecutive triangular numbers and label them a, b, c; the area created is simply (b-a)*(b+c)/2. Thus for 6,10,15 the area beneath the line defined by the points (6,10) and (10,15) is (10-6)*(10+15)/2 = 50. - J. M. Bergot, Jun 28 2011
Let P = ab where a and b are nonequal prime numbers > 1. Let Q be the product of all divisors of P^n. Q can be expressed as P^k, where k = n*(n+1)^2/2. This follows from the fact that all divisors are of the form a^i*b^j, for i,j from 0 to n. An example is given below. In the more general case, where P is the product of m nonequal prime numbers, k = n*(n+1)^m/2. When m=3, the sequence is the same as A092364. - James A. Raymond & Douglas Raymond, Dec 04 2011
For n > 0: sum of n-th row in A014132, seen as a triangle read by rows. - Reinhard Zumkeller, Dec 12 2012
Partial sums of A005449. - Omar E. Pol, Jan 12 2013
a(n) is the sum of x (or y) coordinates for an n X n square lattice in the upper right quadrant of Z^2 whose corner points are (0, 0), (0, n), (n, 0), and (n, n). - Joseph Wheat, Feb 03 2018
a(n) is the number of permutations of [n+2] that contain exactly 2 elements which are not left-to-right minimal. E.g., the 9 permutations comprising a(2) are 2134, 2143, 3124, 3142, 4123, 4132, 2314, 2413, 3412. - Andy Niedermaier, May 07 2022

Examples

			Let P^n=6^2. The product of the divisors of 36 = 10077796 = 6^9, i.e., for n=2, k=9. - _James A. Raymond_ & Douglas Raymond, Dec 04 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002411: -a(-1-n).
Cf. A000914 (partial sums), A005449 (first differences).
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in A267370.
A bisection of A330298.

Programs

Formula

G.f.: x*(x + 2)/(1 - x)^4. - Michael Somos, Jan 30 2004
a(n) = (n + 1) * binomial(n+1, 2). - Zerinvary Lajos, Jan 10 2006
a(n) = A035006(n+1)/4. - Johannes W. Meijer, Feb 04 2010
a(n) = 2*binomial(n+1, 2) + 3*binomial(n+1, 3). - Gary Detlefs, Jun 06 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 14 2012
a(n) = A000292(n) + A000330(n). - Omar E. Pol, Jan 11 2013
a(n) = A045991(n+1)/2. - J. M. Bergot, Aug 10 2013
a(n) = Sum_{j=1..n} Sum_{i=1..j} (2*j - i + 1). - Wesley Ivan Hurt, Nov 17 2014
a(n) = Sum_{i=0..n} n*(n - i) + i. - Bruno Berselli, Jan 13 2016
a(n) = t(n, A000217(n)), where t(h,k) = A000217(h) + h*k. - Bruno Berselli, Feb 28 2017
Sum_{n>0} 1/a(n) = 4 - Pi^2/3. - Jaume Oliver Lafont, Jul 11 2017 [corrected by Amiram Eldar, Jan 28 2022]
E.g.f.: exp(x)*x*(4 + 5*x + x^2)/2. - Stefano Spezia, May 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/6 + 4*log(2) - 4. - Amiram Eldar, Jan 28 2022
From J.S. Seneschal, Jun 27 2024: (Start)
a(n) = (A002378(n)^2/2)/n = (n+1)/2 * A002378(n).
a(n) = A027480(n) - A000217(n). (End)

A163102 a(n) = n^2*(n+1)^2/2.

Original entry on oeis.org

0, 2, 18, 72, 200, 450, 882, 1568, 2592, 4050, 6050, 8712, 12168, 16562, 22050, 28800, 36992, 46818, 58482, 72200, 88200, 106722, 128018, 152352, 180000, 211250, 246402, 285768, 329672, 378450, 432450, 492032, 557568, 629442, 708050, 793800, 887112, 988418
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163282.
Also, the number of nonattacking placements of 2 rooks on an (n+1) X (n+1) board. - Thomas Zaslavsky, Jun 26 2010
If P_{k}(n) is the n-th k-gonal number, then a(n) = P_{s}(n+1)*P_{t}(n+1) - P_{s+1}(n+1)*P_{t-1}(n+1) for s=t+1. - Bruno Berselli, Sep 05 2014
Subsequence of A000982, see formula. - David James Sycamore, Jul 31 2018
Number of edges in the (n+1) X (n+1) rook complement graph. - Freddy Barrera, May 02 2019
Number of paths from (0,0) to (n+2,n+2) consisting of exactly three forward horizontal steps and three upward vertical steps. - Greg Dresden and Snezhana Tuneska, Aug 24 2023

References

  • Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - Thomas Zaslavsky, Jun 26 2010

Crossrefs

Programs

Formula

a(n) = 2*A000537(n) = A035287(n+1)/2. - Omar E. Pol, Nov 29 2011
G.f.: 2*x*(1+4*x+x^2)/(1-x)^5. - R. J. Mathar, Nov 30 2011
Let t(n) = A000217(n). Then a(n) = (t(n-1)*(t(n)+t(n+1)) + t(n)*(t(n-1)+t(n+1)) + t(n+1)*(t(n-1)+t(n)))/3. - J. M. Bergot, Jun 21 2012
a(n) = A000982(n*(n+1)). - David James Sycamore, Jul 31 2018
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2/3 - 6.
Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 8*log(2). (End)
Another identity: ..., a(4) = 200 = 1*(2+4+6+8) + 3*(4+6+8) + 5*(6+8) + 7*(8), a(5) = 450 = 1*(2+4+6+8+10) + 3*(4+6+8+10) + 5*(6+8+10) + 7*(8+10) + 9*(10) = 30+84+120+126+90, and so on. - J. M. Bergot, Aug 25 2022
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: x*(2 + x)*(2 + 6*x + x^2)*exp(x)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A254371(n)/4 = A060300(n)/8. (End)

A163275 a(n) = n^5*(n+1)^2/2.

Original entry on oeis.org

0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Comments

Row sums of triangle A163285.

Crossrefs

Programs

  • Maple
    A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n),n=0..60) ; # R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[(1/2)*n^5*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{8,-28,56, -70,56,-28,8,-1}, {0,2,144,1944,12800,56250,190512,537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 2*x*(1 + 64*x + 424*x^2 + 584*x^3 + 179*x^4 +8*x^5)/(x-1)^8. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 12 -5*Pi^2/3 - 2*Pi^4/45 + 6*zeta(3) + 2*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*log(2) + 9*zeta(3)/2 + 15*zeta(5)/8 - 12 - Pi^2/2 - 7*Pi^4/180. (End)

Extensions

Extended by R. J. Mathar, Feb 05 2010

A163276 a(n) = n^6*(n+1)^2/2.

Original entry on oeis.org

0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832, 26572050, 60500000, 127552392, 252315648, 473027282, 847072800, 1458000000, 2424307712, 3910286178, 6139206432, 9409176200, 14112000000, 20755401282, 29988984608
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^6*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    seq((1/2)*n^6*(n+1)^2, n = 0 .. 25); # Emeric Deutsch, Aug 01 2009
  • Mathematica
    Table[(1/2)*n^6*(n + 1)^2, {n,0,50}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 2, 288, 5832, 51200, 281250, 1143072, 3764768, 10616832}, 50] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 + 135*x +1656*x^2 +4456*x^3 +3231*x^4 +585*x^5 +16*x^6)/(1-x)^9 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

G.f.: 2*x*(1+135*x+1656*x^2+4456*x^3+3231*x^4+585*x^5+16*x^6)/(1-x)^9. - Colin Barker, May 05 2012
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2 + Pi^4/15 + 2*Pi^6/945 - 14 - 8*zeta(3) - 4*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 14 + 2*Pi^2/3 + 7*Pi^4/120 + 31*Pi^6/15120 - 24*log(2) - 6*zeta(3) - 15*zeta(5)/4. (End)

Extensions

Extended by Emeric Deutsch, Aug 01 2009

A163277 a(n) = n^7*(n+1)^2/2.

Original entry on oeis.org

0, 2, 576, 17496, 204800, 1406250, 6858432, 26353376, 84934656, 239148450, 605000000, 1403076312, 3027787776, 6149354666, 11859019200, 21870000000, 38788923392, 66474865026, 110505715776, 178774347800, 282240000000
Offset: 0

Views

Author

Omar E. Pol, Jul 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^7*(n+1)^2/2: n in [0..30]]; // Vincenzo Librandi, Dec 13 2016
  • Maple
    A163277 := proc(n) n^7*(n+1)^2/2 ; end proc: seq(A163277(n),n=0..60) ; \\ R. J. Mathar, Feb 05 2010
  • Mathematica
    Table[(1/2)*n^7*(n + 1)^2, {n,0,50}] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0], Vec(2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
    

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = n^2*A163275(n).
G.f.: 2*x*(1 +278*x +5913*x^2 +27760*x^3 +38435*x^4 +16434*x^5 +1867*x^6 +32*x^7)/(x-1)^10. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 16 - 7*Pi^2/3 - 4*Pi^4/45 - 4*Pi^6/945 + 10*zeta(3) + 6*zeta(5) + 2*zeta(7).
Sum_{n>=1} (-1)^(n+1)/a(n) = 28*log(2) + 15*zeta(3)/2 + 45*zeta(5)/8 + 63*zeta(7)/32 - 16 - 5*Pi^2/6 - 7*Pi^4/90 - 31*Pi^6/7560. (End)

Extensions

Extended by R. J. Mathar, Feb 05 2010
Showing 1-5 of 5 results.