A381901 Partition the natural numbers by letting a(1)=1 (denoting the set {1}) and for n>1 define a(n) to be the least integer such that the product of the set of integers {a(n-1)+1,...,a(n)} is an integer multiple of the previous partition's product.
1, 2, 4, 8, 14, 26, 46, 86, 166, 326, 634, 1262, 2518, 5006, 10006, 19946, 39874, 79738, 159398, 318778, 637502, 1274998, 2549978, 5099902, 10199786, 20399534, 40799062, 81598082, 163196134, 326392258, 652784498, 1305568942, 2611137838, 5222275634, 10444551254
Offset: 1
Keywords
Examples
The first few corresponding partitions are {1}, {2}, {3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12, 13, 14}.
Comments