cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000312 a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979
Offset: 0

Views

Author

Keywords

Comments

Also number of labeled pointed rooted trees (or vertebrates) on n nodes.
For n >= 1 a(n) is also the number of n X n (0,1) matrices in which each row contains exactly one entry equal to 1. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
Also the number of labeled rooted trees on (n+1) nodes such that the root is lower than its children. Also the number of alternating labeled rooted ordered trees on (n+1) nodes such that the root is lower than its children. - Cedric Chauve (chauve(AT)lacim.uqam.ca), Mar 27 2002
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i, j)!)) * ((n!/(n - p(i)))!/(Product_{j=1..d(i)} m(i, j)!)). - Thomas Wieder, May 18 2005
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n) is the total number of leaves in all (n+1)^(n-1) trees on {0,1,2,...,n} rooted at 0. For example, with edges directed away from the root, the trees on {0,1,2} are {0->1,0->2},{0->1->2},{0->2->1} and contain a total of a(2)=4 leaves. - David Callan, Feb 01 2007
Limit_{n->infinity} A000169(n+1)/a(n) = exp(1). Convergence is slow, e.g., it takes n > 74 to get one decimal place correct and n > 163 to get two of them. - Alonso del Arte, Jun 20 2011
Also smallest k such that binomial(k, n) is divisible by n^(n-1), n > 0. - Michel Lagneau, Jul 29 2013
For n >= 2 a(n) is represented in base n as "one followed by n zeros". - R. J. Cano, Aug 22 2014
Number of length-n words over the alphabet of n letters. - Joerg Arndt, May 15 2015
Number of prime parking functions of length n+1. - Rui Duarte, Jul 27 2015
The probability density functions p(x, m=q, n=q, mu=1) = A000312(q)*E(x, q, q) and p(x, m=q, n=1, mu=q) = (A000312(q)/A000142(q-1))*x^(q-1)*E(x, q, 1), with q >= 1, lead to this sequence, see A163931, A274181 and A008276. - Johannes W. Meijer, Jun 17 2016
Satisfies Benford's law [Miller, 2015]. - N. J. A. Sloane, Feb 12 2017
A signed version of this sequence apart from the first term (1, -4, -27, 256, 3125, -46656, ...), has the following property: for every prime p == 1 (mod 2n), (-1)^(n(n-1)/2)*n^n = A057077(n)*a(n) is always a 2n-th power residue modulo p. - Jianing Song, Sep 05 2018
From Juhani Heino, May 07 2019: (Start)
n^n is both Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)
and Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)*i.
The former is the familiar binomial distribution of a throw of n n-sided dice, according to how many times a required side appears, 0 to n. The latter is the same but each term is multiplied by its amount. This means that if the bank pays the player 1 token for each die that has the chosen side, it is always a fair game if the player pays 1 token to enter - neither bank nor player wins on average.
Examples:
2-sided dice (2 coins): 4 = 1 + 2 + 1 = 1*0 + 2*1 + 1*2 (0 omitted from now on);
3-sided dice (3 long triangular prisms): 27 = 8 + 12 + 6 + 1 = 12*1 + 6*2 + 1*3;
4-sided dice (4 long square prisms or 4 tetrahedrons): 256 = 81 + 108 + 54 + 12 + 1 = 108*1 + 54*2 + 12*3 + 1*4;
5-sided dice (5 long pentagonal prisms): 3125 = 1024 + 1280 + 640 + 160 + 20 + 1 = 1280*1 + 640*2 + 160*3 + 20*4 + 1*5;
6-sided dice (6 cubes): 46656 = 15625 + 18750 + 9375 + 2500 + 375 + 30 + 1 = 18750*1 + 9375*2 + 2500*3 + 375*4 + 30*5 + 1*6.
(End)
For each n >= 1 there is a graph on a(n) vertices whose largest independent set has size n and whose independent set sequence is constant (specifically, for each k=1,2,...,n, the graph has n^n independent sets of size k). There is no graph of smaller order with this property (Ball et al. 2019). - David Galvin, Jun 13 2019
For n >= 2 and 1 <= k <= n, a(n)*(n + 1)/4 + a(n)*(k - 1)*(n + 1 - k)/2*n is equal to the sum over all words w = w(1)...w(n) of length n over the alphabet {1, 2, ..., n} of the following quantity: Sum_{i=1..w(k)} w(i). Inspired by Problem 12432 in the AMM (see links). - Sela Fried, Dec 10 2023
Also, dimension of the unique cohomology group of the smallest interval containing the poset of partitions decorated by Perm, i.e. the poset of pointed partitions. - Bérénice Delcroix-Oger, Jun 25 2025

Examples

			G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 62, 63, 87.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 173, #39.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of triangle A055858. Row sums of A066324.
Cf. A001923 (partial sums), A002109 (partial products), A007781 (first differences), A066588 (sum of digits).
Cf. A056665, A081721, A130293, A168658, A275549-A275558 (various classes of endofunctions).

Programs

  • Haskell
    a000312 n = n ^ n
    a000312_list = zipWith (^) [0..] [0..]  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    A000312 := n->n^n: seq(A000312(n), n=0..17);
  • Mathematica
    Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *)
    a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
  • Maxima
    A000312[n]:=if n=0 then 1 else n^n$
    makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    {a(n) = n^n};
    
  • PARI
    is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
    
  • PARI
    {a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
    
  • Python
    def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022

Formula

a(n-1) = -Sum_{i=1..n} (-1)^i*i*n^(n-1-i)*binomial(n, i). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
E.g.f.: 1/(1 + W(-x)), W(x) = principal branch of Lambert's function.
a(n) = Sum_{k>=0} binomial(n, k)*Stirling2(n, k)*k! = Sum_{k>=0} A008279(n,k)*A048993(n,k) = Sum_{k>=0} A019538(n,k)*A007318(n,k). - Philippe Deléham, Dec 14 2003
E.g.f.: 1/(1 - T), where T = T(x) is Euler's tree function (see A000169).
a(n) = A000169(n+1)*A128433(n+1,1)/A128434(n+1,1). - Reinhard Zumkeller, Mar 03 2007
Comment on power series with denominators a(n): Let f(x) = 1 + Sum_{n>=1} x^n/n^n. Then as x -> infinity, f(x) ~ exp(x/e)*sqrt(2*Pi*x/e). - Philippe Flajolet, Sep 11 2008
E.g.f.: 1 - exp(W(-x)) with an offset of 1 where W(x) = principal branch of Lambert's function. - Vladimir Kruchinin, Sep 15 2010
a(n) = (n-1)*a(n-1) + Sum_{i=1..n} binomial(n, i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
With an offset of 1, the e.g.f. is the compositional inverse ((x - 1)*log(1 - x))^(-1) = x + x^2/2! + 4*x^3/3! + 27*x^4/4! + .... - Peter Bala, Dec 09 2011
a(n) = denominator((1 + 1/n)^n) for n > 0. - Jean-François Alcover, Jan 14 2013
a(n) = A089072(n,n) for n > 0. - Reinhard Zumkeller, Mar 18 2013
a(n) = (n-1)^(n-1)*(2*n) + Sum_{i=1..n-2} binomial(n, i)*(i^i*(n-i-1)^(n-i-1)), n > 1, a(0) = 1, a(1) = 1. - Vladimir Kruchinin, Nov 28 2014
log(a(n)) = lim_{k->infinity} k*(n^(1+1/k) - n). - Richard R. Forberg, Feb 04 2015
From Ilya Gutkovskiy, Jun 18 2016: (Start)
Sum_{n>=1} 1/a(n) = 1.291285997... = A073009.
Sum_{n>=1} 1/a(n)^2 = 1.063887103... = A086648.
Sum_{n>=1} n!/a(n) = 1.879853862... = A094082. (End)
A000169(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 23 2016
a(n) = n!*Product_{k=1..n} binomial(n, k)/Product_{k=1..n-1} binomial(n-1, k) = n!*A001142(n)/A001142(n-1). - Tony Foster III, Sep 05 2018
a(n-1) = abs(p_n(2-n)), for n > 2, the single local extremum of the n-th row polynomial of A055137 with Bagula's sign convention. - Tom Copeland, Nov 15 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = A083648. - Amiram Eldar, Jun 25 2021
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = e (see Brothers/Knox link). - Harlan J. Brothers, Oct 24 2021
Conjecture: a(n) = Sum_{i=0..n} A048994(n, i) * A048993(n+i, n) for n >= 0; proved by Mike Earnest, see link at A354797. - Werner Schulte, Jun 19 2022

A001864 Total height of rooted trees with n labeled nodes.

Original entry on oeis.org

0, 2, 24, 312, 4720, 82800, 1662024, 37665152, 952401888, 26602156800, 813815035000, 27069937855488, 972940216546896, 37581134047987712, 1552687346633913000, 68331503866677657600, 3191386068123595166656, 157663539876436721860608
Offset: 1

Views

Author

Keywords

Comments

a(n) is the total number of nonrecurrent elements mapped into a recurrent element in all functions f:{1,2,...,n}->{1,2,...,n}. a(n) = Sum_{k=1..n-1} A216971(n,k)*k. - Geoffrey Critzer, Jan 01 2013
a(n) is the sum of the lengths of all cycles over all functions f:{1,2,...,n}->{1,2,...,n}. Fixed points are taken to have length zero. a(n) = Sum_{k=2..n} A066324(n,k)*(k-1). - Geoffrey Critzer, Aug 19 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A001864 := proc(n) local k; add(n!*n^k/k!, k=0..n-2); end;
  • Mathematica
    Table[Sum[Binomial[n,k](n-k)^(n-k) k^k,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Oct 10 2011 *)
    a[n_] := n*(n-1)*Exp[n]*Gamma[n-1, n] // Round; Table[a[n], {n, 1, 18}]  (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    a(n)=sum(k=1,n-1,binomial(n,k)*(n-k)^(n-k)*k^k)
    
  • Python
    from math import comb
    def A001864(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) # Chai Wah Wu, Apr 25-26 2023

Formula

a(n) = n*A000435(n).
E.g.f: (LambertW(-x)/(1+LambertW(-x)))^2. - Vladeta Jovovic, Apr 10 2001
a(n) = Sum_{k=1..n-1} binomial(n, k)*(n-k)^(n-k)*k^k. - Benoit Cloitre, Mar 22 2003
a(n) ~ sqrt(Pi/2)*n^(n+1/2). - Vaclav Kotesovec, Aug 07 2013
a(n) = n! * Sum_{k=0..n-2} n^k/k!. - Jianing Song, Aug 08 2022

A190314 The number of cycles in the digraph representation of all endofunctions on {1,2,...,n}.

Original entry on oeis.org

0, 1, 5, 38, 390, 5049, 78960, 1447886, 30461872, 723267369, 19130274880, 557794986814, 17775137850624, 614607897664305, 22917282895782912, 916671255921364950, 39152092883971954688, 1778431981539189344177, 85607684151779322519552, 4353142694568849287025142, 233169669255877689516032000
Offset: 0

Views

Author

Geoffrey Critzer, May 08 2011

Keywords

Comments

Equivalently, since each component contains exactly one cycle, a(n) is the number of connected components in all endofuntions on {1,2,...,n}. An endofunction on {1,2,...,n} is a function from {1,2,...,n} into {1,2,...,n}. Here we are counting self loops as a cycle.
The total number of j-cycles over all functions on {1,2,...,n} is (j-1)!*binomial(n,j)*n^(n-j). - Geoffrey Critzer, Dec 26 2012
a(n) was "not easy to estimate" in 1953 according to the Metropolis-Ulam reference. - David Callan, Jun 15 2018

Examples

			a(2) = 5 because there are four functions from {1,2} into {1,2} but only one of these is not connected: 1->1,2->2 so there is a total of 5 components in all. - _Geoffrey Critzer_, Mar 22 2012
		

Crossrefs

Cf. A060281.

Programs

  • Maple
    a:= n-> add((k-1)!*binomial(n, k)*n^(n-k), k=1..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 26 2012
  • Mathematica
    f[list_] := Total[Table[i * list[[i]], {i,1,Length[list]}]]; t=Sum[n^(n-1)x^n/n!, {n,1,20}]; Map[f,Transpose[Table[Drop[Range[0,20]! CoefficientList[Series[Log[1/(1-t)]^k/k!, {x,0,20}], x], 1], {k,0,20}]]]
    nmax = 20; CoefficientList[Series[-Log[1 + LambertW[-x]]/(1 + LambertW[-x]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)

Formula

E.g.f.: Log[1/(1-T(x))]/(1-T(x)) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 22 2012
a(n) = Sum_{k=1..n} (k-1)!*C(n,k)*n^(n-k). - Geoffrey Critzer, Dec 26 2012
a(n) ~ n^n*(log(2*n) + gamma)/2, where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2013
a(n) = Sum_{k=1..n} A066324(n,k)*H(k) where H(k) is the k-th harmonic number. - Geoffrey Critzer, Nov 02 2014
a(n) = n! * [x^n] -exp(n*x)*log(1 - x). - Ilya Gutkovskiy, Jan 18 2018
a(n) = Sum_{k=1..n} k * A060281(n,k). - Alois P. Heinz, Dec 15 2021
Conjectures from Velin Yanev, Apr 14 2024: (Start)
a(n) = (n^n)*Integral_{t=0..oo} ((t + 1)^n - 1)/(t*e^(n*t)) dt for n > 0.
a(n) = (e^n)*Gamma(n) + (n^n)*(n*hypergeom([1, 1], [2, n + 2], n)/(n + 1) - ((-1)^n)*Gamma(n)*Gamma(1 - n, -n) + log(n) - polygamma(n) - 1/n + i*Pi) for n > 0, where polygamma is the digamma function and the bivariate gamma function is the upper incomplete gamma function. (End)

A063169 a(n) = n*A001865(n).

Original entry on oeis.org

1, 6, 51, 568, 7845, 129456, 2485567, 54442368, 1339822377, 36602156800, 1099126705611, 35986038303744, 1275815323139149, 48693140873545728, 1990581237014772375, 86778247940387209216, 4018626330009931930833, 197009947951733259436032, 10193206233792610863520867
Offset: 1

Views

Author

Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)

Keywords

Comments

Schenker sums without n-th term.
a(n)/n^n = Q(n) (called Ramanujan's function by Knuth).
Urn, n balls, with replacement: how many selections before a ball is chosen that was chosen already? Expected value is a(n)/n^n.
a(n) is the total number of recurrent elements over all endofunctions on n labeled points. a(n) = Sum_{k=1..n} A066324(n,k)*k. - Geoffrey Critzer, Dec 05 2011

Examples

			a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) = 568.
		

References

  • D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, Reading, MA, 1.2.11.3 p. 116

Crossrefs

Programs

  • Mathematica
    Flatten[Range[0, 20]! CoefficientList[Series[D[1/(1 - y t), y] /. y -> 1, {x, 0, 20}], {x, y}]]
    (* Second program: *)
    a[n_] := Exp[n]*Gamma[n+1, n] - n^n; Array[a, 19] (* Jean-François Alcover, Jan 25 2018 *)
  • PARI
    a(n)=sum(k=1,n,binomial(n,k)*n^(n-k)*k!) /* Michael Somos, Jun 09 2004 */
    
  • PARI
    a(n)=sum(k=1,n,binomial(n,k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013
    
  • PARI
    a(n)=sum(k=0,n-1,n!/k!*n^k) \\ Ruud H.G. van Tol, Jan 14 2023
    
  • Python
    from math import comb
    def A063169(n): return (sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n) + n**n # Chai Wah Wu, Apr 25-26 2023
  • UBASIC
    10 for N=1 to 42 : T=N^N : S=0
    20 for K=N to 1 step -1 : T/=N : T*=K : S+=T : next K
    30 print N,S : next N
    

Formula

a(n) = Sum_{k=0..n-1} n^k * n!/k!.
a(n)/n! = Sum_{k=0..n-1} n^k/k! (first n terms of e^n power series).
E.g.f.: T/(1-T)^2, where T=T(x) is Euler's tree function (see A000169) - Len Smiley, Nov 28 2001
E.g.f.: -LambertW(-x)/(1+LambertW(-x))^2. - Alois P. Heinz, Nov 16 2011
a(n) = A063170(n) - n^n.
a(n) = Sum_{k=1..n} C(n,k) * (n-k)^(n-k) * k^k. - Paul D. Hanna, Jul 04 2013
a(n) ~ n^(n+1/2)*sqrt(Pi/2). - Vaclav Kotesovec, Oct 05 2013
a(n) = Sum_{k=1..n} (n!/(n-k)!) * k^2 * n^(n-k-1). - Brian P Hawkins, Feb 07 2024

A122525 Triangle read by rows: G(s, rho) = ((s-1)!/s)*Sum_{i=0..s-1} ((s-i)/i!)*(s*rho)^i.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 6, 18, 24, 16, 24, 96, 180, 200, 125, 120, 600, 1440, 2160, 2160, 1296, 720, 4320, 12600, 23520, 30870, 28812, 16807, 5040, 35280, 120960, 268800, 430080, 516096, 458752, 262144, 40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969
Offset: 1

Views

Author

Arie Harel, Sep 14 2006

Keywords

Comments

When s is a positive integer and 0 < rho < 1 then C(s,rho):=(s*rho)^s/G(s,rho)/s is the well-known Erlang delay (or the Erlang's C) formula. This measure is a basic formula of queueing theory. The applications of this formula are in diverse systems where queueing phenomena arise, including telecommunications, production, and service systems. The formula gives the steady-state probability of delay in the M/M/s queueing system. The number of servers is denoted by s and the traffic intensity is denoted by rho, 0 < rho < 1, where rho=(arrival rate)/(service rate)/s.
With offset = 0, T(n,n-k) is the number of partial functions on {1,2,...,n} with exactly k recurrent elements for 0 <= k <= n. Row sums = (n+1)^n. - Geoffrey Critzer, Sep 08 2012

Examples

			G(5, rho) = 24 + 96*rho + 180*rho^2 + 200*rho^3 + 125*rho^4. The coefficients (24, 96, 180, 200, 125) give the 5th line of the triangle.
Triangle begins:
      1;
      1,      1;
      2,      4,       3;
      6,     18,      24,      16;
     24,     96,     180,     200,     125;
    120,    600,    1440,    2160,    2160,    1296;
    720,   4320,   12600,   23520,   30870,   28812,   16807;
   5040,  35280,  120960,  268800,  430080,  516096,  458752,  262144;
  40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969;
		

References

  • Cooper, R. B. 1981, Introduction to Queueing Theory. Second ed., North Holland, New York.
  • Harel, A. 1988. Sharp Bounds and Simple Approximations for the Erlang Delay and Loss Formulas. Management Science, Vol. 34, 959-972.
  • Harel, A. and P. Zipkin. 1987a. Strong Convexity Results for Queueing Systems. Operations Research, Vol. 35, No. 3, 405-418.
  • Harel, A. and P. Zipkin. 1987b. The Convexity of a General Performance Measure for the Multi-Server Queues. Journal of Applied Probability, Vol. 24, 725-736.
  • Jagers, A. A. and E. A. van Doorn, 1991. Convexity of functions which are generalizations of the Erlang loss function and the Erlang delay function. SIAM Review. Vol. 33 (2), 281-282.
  • Lee, H. L. and M. A. Cohen. 1983. A Note on the Convexity of Performance Measures of M/M/c Queueing Systems. Journal of Applied Probability, Vol. 20, 920-923.
  • Medhi, J. 2003. Stochastic Models in Queueing Theory. Second ed., Academic Press, New York.
  • Smith, D.R. and W. Whitt. 1981. Resource Sharing for Efficiency in Traffic Systems. Bell System Technical Journal, Vol. 60, No. 1, 39-55.

Crossrefs

Programs

  • Maple
    G:= proc(s) G(s):= (s-1)!/s*add((s-i)/i!*(s*rho)^i, i=0..(s-1)) end:
    T:= n-> coeff(G(n), rho, k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Sep 08 2012
  • Mathematica
    (* First program *)
    nn=6; t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; f[list_]:=Select[list,#>0&]; Map[f,Map[Reverse,Range[0,nn]!CoefficientList[Series[Exp[t]/(1-y t),{x,0,nn}],{x,y}]]]//Grid  (* Geoffrey Critzer, Sep 08 2012 *)
    (* Second program *)
    T[n_, k_]:= Coefficient[Series[((n-1)!/n)*Sum[(n-j)*(n*x)^j/j!, {j,0,n-1}], {x,0,30}], x, k];
    Table[T[n, k], {n,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jan 06 2022 *)
  • Sage
    def A122525(n,k): return ( (factorial(n-1)/n)*sum((n-j)*(n*x)^j/factorial(j) for j in (0..n-1)) ).series(x, n+1).list()[k]
    flatten([[A122525(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jan 06 2022

Formula

An equivalent expression for G(s, rho) that is often used is: G(s, rho) = (1-rho)*(s-1)!*Sum_{i=0..s-1} (s^i*rho^i/i!) + rho^s*s^(s-1).
For s > 0 and rho > 0 one can use the expression: G(s, rho) = (exp(s*rho)*s*rho*(1-rho)*(s-1)*Gamma(s-1, s*rho) + rho^s*s^s)/(s*rho).
For s > 0 and rho > 0 one can also use the integral representation G(s, rho) = ((s*rho)^s/s)*Integral_{t=0..oo} rho*s*exp(-rho*s*t)*t*(1+t)^(s-1) dt.
Multiplying the n-th row entries by n+1 results in triangle A066324 in row reversed form. - Peter Bala, Sep 30 2011
Row generating polynomials are given by (1/n)*D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator exp(x)/(1-x)*d/dx. - Peter Bala, Dec 27 2011

A243203 Terms of a particular integer decomposition of N^N.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 9, 12, 6, 0, 64, 96, 72, 24, 0, 625, 1000, 900, 480, 120, 0, 7776, 12960, 12960, 8640, 3600, 720, 0, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 0, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 0
Offset: 0

Views

Author

Stanislav Sykora, Jun 01 2014

Keywords

Comments

a(n) is an element in the triangle of terms t(N,j) = c(N,j)*binomial(N,j), N = 0,1,2,3,... denoting a row, and j = 0,1,2,...r. The coefficients c(N,j) are specified numerically by the formula below. Note that all rows start with 0, which makes them easily recognizable.
The sum of every row is N^N.
Though the original contexts are different, this triangle matches that of A066324 except for row 0, and for the zero term of each row. On this point, see the comment in A243202.

Examples

			The first rows of the triangle are (first item is the row number N):
0 0
1 0, 1
2 0, 2, 2
3 0, 9, 12, 6
4 0, 64, 96, 72, 24
5 0, 625, 1000, 900, 480, 120
6 0, 7776, 12960, 12960, 8640, 3600, 720
7 0, 117649, 201684, 216090, 164640, 88200, 30240, 5040
8 0, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320
		

Crossrefs

Programs

  • PARI
    A243202(maxrow) = {
      my(v,n,j,irow,f);v = vector((maxrow+1)*(maxrow+2)/2);
      for(n=1,maxrow,irow=1+n*(n+1)/2;v[irow]=0;f=1;
      for(j=1,n,f *= j;v[irow+j] = j*f*n^(n-j-1)*binomial(n,j);););
      return(v);}

Formula

c(N,j)=N^(N-j)*(j/N)*j! for N>0 and 0<=j<=N, and c(N,j)=0 otherwise.
Showing 1-6 of 6 results.