cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Brian P Hawkins

Brian P Hawkins's wiki page.

Brian P Hawkins has authored 1 sequences.

A332754 a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 14, 21, 49, 77, 175, 287, 637, 1079, 2353, 4082, 8788, 15522, 33098, 59280, 125476, 227240, 478192, 873886, 1830270, 3370030, 7030570, 13027730, 27088870, 50469890, 104647630, 195892565, 405187825, 761615285, 1571990935, 2965576715
Offset: 1

Author

Brian P Hawkins, Feb 22 2020

Keywords

Comments

a(n) is the sum of the alternating series of central binomial coefficients (including all rows, defined as binomial(m,floor(m/2)) or equivalently binomial(m,ceiling(m/2)) for all m odd, A001405).

Programs

  • Maple
    f:= gfun:-rectoproc({(4*n + 4)*a(n) + (6 + 4*n)*a(n + 1) + (-n - 1)*a(n + 2) + (-n - 3)*a(n + 3), a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Oct 08 2020
  • Mathematica
    Sum[(-1)^(k + n + 1) Binomial[k, Floor[k/2]], {k, 1, -1 + n}]
  • PARI
    a(n) = sum(k=1, n-1, (-1)^(k+n+1)*binomial(k, k\2)); \\ Michel Marcus, Feb 22 2020

Formula

a(n) = Sum_{k=1..n-1} ((-1)^(k+n+1)*binomial(k,floor(k/2))).
From Robert Israel, Oct 08 2020: (Start)
D-finite with recurrence: (4*n - 8)*a(n - 3) + (-6 + 4*n)*a(n - 2) + (-n + 2)*a(n - 1) - n*a(n) = 0.
G.f. (sqrt((1+2*x)/(1-2*x))-1-2*x)/(2+2*x). (End)