A244137
Triangle read by rows: terms T(n,k) of a binomial decomposition of n^n as Sum(k=0..n)T(n,k).
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 12, 6, 9, 0, 108, 48, 36, 64, 0, 1280, 540, 360, 320, 625, 0, 18750, 7680, 4860, 3840, 3750, 7776, 0, 326592, 131250, 80640, 60480, 52500, 54432, 117649, 0, 6588344, 2612736, 1575000, 1146880, 945000, 870912, 941192, 2097152
Offset: 0
First rows of the triangle, all summing up to n^n:
1,
0, 1,
0, 2, 2,
0, 12, 6, 9,
0, 108, 48, 36, 64,
0, 1280, 540, 360, 320, 625,
Cf.
A243203,
A244116,
A244117,
A244118,
A244119,
A244120,
A244121,
A244122,
A244123,
A244124,
A244125,
A244126,
A244127,
A244128,
A244129,
A244130,
A244131,
A244132,
A244133,
A244134,
A244135,
A244136,
A244138,
A244139,
A244140,
A244141,
A244142,
A244143.
-
seq(nmax, b)={my(v, n, k, irow);
v = vector((nmax+1)*(nmax+2)/2); v[1]=1;
for(n=1, nmax, irow=1+n*(n+1)/2; v[irow]=0;
for(k=1, n, v[irow+k]=(-k*b)^(k-1)*(n+k*b)^(n-k)*binomial(n, k); ); );
return(v); }
a=seq(100,-1);
A066324
Number of endofunctions on n labeled points constructed from k rooted trees.
Original entry on oeis.org
1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1
Triangle T(n,k) begins:
1;
2, 2;
9, 12, 6;
64, 96, 72, 24;
625, 1000, 900, 480, 120;
7776, 12960, 12960, 8640, 3600, 720;
117649, 201684, 216090, 164640, 88200, 30240, 5040;
...
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.
-
T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 22 2012
-
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
-
T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011
A243202
Coefficients of a particular decomposition of N^N in terms of binomial coefficients.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 0, 3, 4, 6, 0, 16, 16, 18, 24, 0, 125, 100, 90, 96, 120, 0, 1296, 864, 648, 576, 600, 720, 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040, 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320, 0
Offset: 0
The first rows of the triangle are (first item is the row number N):
0 0
1 0, 1
2 0, 1, 2
3 0, 3, 4, 6
4 0, 16, 16, 18, 24
5 0, 125, 100, 90, 96, 120
6 0, 1296, 864, 648, 576, 600, 720
7 0, 16807, 9604, 6174, 4704, 4200, 4320, 5040
8 0, 262144, 131072, 73728, 49152, 38400, 34560, 35280, 40320
-
A243202(maxrow) = {
my(v,n,j,irow,f);v = vector((maxrow+1)*(maxrow+2)/2);
for(n=1,maxrow,irow=1+n*(n+1)/2;v[irow]=0;f=1;
for(j=1,n,f *= j;v[irow+j] = j*f*n^(n-j-1);););
return(v);}
Showing 1-3 of 3 results.
Comments