cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066324 Number of endofunctions on n labeled points constructed from k rooted trees.

Original entry on oeis.org

1, 2, 2, 9, 12, 6, 64, 96, 72, 24, 625, 1000, 900, 480, 120, 7776, 12960, 12960, 8640, 3600, 720, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 43046721
Offset: 1

Views

Author

Christian G. Bower, Dec 14 2001

Keywords

Comments

T(n,k) = number of endofunctions with k recurrent elements. - Mitch Harris, Jul 06 2006
The sum of row n is n^n, for any n. Basically the same sequence arises when studying random mappings (see A243203, A243202). - Stanislav Sykora, Jun 01 2014

Examples

			Triangle T(n,k) begins:
       1;
       2,      2;
       9,     12,      6;
      64,     96,     72,     24;
     625,   1000,    900,    480,   120;
    7776,  12960,  12960,   8640,  3600,   720;
  117649, 201684, 216090, 164640, 88200, 30240, 5040;
  ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 87, see (2.3.28).
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.32.

Crossrefs

Column 1: A000169.
Main diagonal: A000142.
T(n, n-1): A062119.
Row sums give A000312.

Programs

  • Maple
    T:= (n, k)-> k*n^(n-k)*(n-1)!/(n-k)!:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 22 2012
  • Mathematica
    f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Flatten[Map[f, Drop[Range[0, 10]! CoefficientList[Series[1/(1 - y*t), {x, 0, 10}], {x, y}], 1]]] (* Geoffrey Critzer, Dec 05 2011 *)
  • PARI
    T(n, k)=k*n^(n-k)*(n-1)!/(n-k)! \\ Charles R Greathouse IV, Dec 05 2011

Formula

T(n,k) = k*n^(n-k)*(n-1)!/(n-k)!.
E.g.f. (relative to x): A(x, y)=1/(1-y*B(x)) - 1 = y*x +(2*y+2*y^2)*x^2/2! + (9*y+12*y^2+6*y^3)*x^3/3! + ..., where B(x) is e.g.f. A000169.
From Peter Bala, Sep 30 2011: (Start)
Let F(x,t) = x/(1+t*x)*exp(-x/(1+t*x)) = x*(1 - (1+t)*x + (1+4*t+2*t^2)*x^2/2! - ...). F is essentially the e.g.f. for A144084 (see also A021010). Then the e.g.f. for the present table is t*F(x,t)^(-1), where the compositional inverse is taken with respect to x.
Removing a factor of n from the n-th row entries results in A122525 in row reversed form.
(End)
Sum_{k=2..n} (k-1) * T(n,k) = A001864(n). - Geoffrey Critzer, Aug 19 2013
Sum_{k=1..n} k * T(n,k) = A063169(n). - Alois P. Heinz, Dec 15 2021

A243203 Terms of a particular integer decomposition of N^N.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 9, 12, 6, 0, 64, 96, 72, 24, 0, 625, 1000, 900, 480, 120, 0, 7776, 12960, 12960, 8640, 3600, 720, 0, 117649, 201684, 216090, 164640, 88200, 30240, 5040, 0, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320, 0
Offset: 0

Views

Author

Stanislav Sykora, Jun 01 2014

Keywords

Comments

a(n) is an element in the triangle of terms t(N,j) = c(N,j)*binomial(N,j), N = 0,1,2,3,... denoting a row, and j = 0,1,2,...r. The coefficients c(N,j) are specified numerically by the formula below. Note that all rows start with 0, which makes them easily recognizable.
The sum of every row is N^N.
Though the original contexts are different, this triangle matches that of A066324 except for row 0, and for the zero term of each row. On this point, see the comment in A243202.

Examples

			The first rows of the triangle are (first item is the row number N):
0 0
1 0, 1
2 0, 2, 2
3 0, 9, 12, 6
4 0, 64, 96, 72, 24
5 0, 625, 1000, 900, 480, 120
6 0, 7776, 12960, 12960, 8640, 3600, 720
7 0, 117649, 201684, 216090, 164640, 88200, 30240, 5040
8 0, 2097152, 3670016, 4128768, 3440640, 2150400, 967680, 282240, 40320
		

Crossrefs

Programs

  • PARI
    A243202(maxrow) = {
      my(v,n,j,irow,f);v = vector((maxrow+1)*(maxrow+2)/2);
      for(n=1,maxrow,irow=1+n*(n+1)/2;v[irow]=0;f=1;
      for(j=1,n,f *= j;v[irow+j] = j*f*n^(n-j-1)*binomial(n,j);););
      return(v);}

Formula

c(N,j)=N^(N-j)*(j/N)*j! for N>0 and 0<=j<=N, and c(N,j)=0 otherwise.
Showing 1-2 of 2 results.