cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arie Harel

Arie Harel's wiki page.

Arie Harel has authored 2 sequences.

A121922 The result of the integration Integral_{t=0..oo} -rho*exp(-rho*s*t)*t^j*s*log(1+t) dt can be written as (F(u,j)*exp(u)*Ei(1,u) + G(u,j))/u^j, where rho>0, s>0, and u=rho*s. Sequence is the regular triangle corresponding to G(u,j).

Original entry on oeis.org

-1, 1, -3, -1, 4, -11, 1, -5, 18, -50, -1, 6, -27, 96, -274, 1, -7, 38, -168, 600, -1764, -1, 8, -51, 272, -1200, 4320, -13068, 1, -9, 66, -414, 2200, -9720, 35280, -109584, -1, 10, -83, 600, -3750, 19920, -88200, 322560, -1026576, 1, -11, 102, -836, 6024, -37620, 199920, -887040, 3265920, -10628640
Offset: 0

Author

Arie Harel, Sep 09 2006

Keywords

Examples

			At j=7, the result of the integration Integral_{t=0..oo} -rho*exp(-rho*s*t)*t^j*s*log(1+t) dt
can be written as (F(u,7)*exp(u)*Ei(1,u) + G(u,7))/u^7, where
F(u,7) = u^7 - 7*u^6 + 42*u^5 - 210*u^4 + 840*u^3 -2520*u^2 + 5040*u - 5040,
G(u,7) = - u^6 + 8*u^5 - 51*u^4 + 272*u^3 - 1200*u^2 + 4320*u - 13068,
and u=rho*s.
The coefficients of F(u,7), i.e., (1, -7, 42, -210, 840, 2520, 5040, -5040), comprise the 7th row of A008279 (see also A068424). The coefficients of G(u,7), i.e., (-1, 8, -51, 272, -1200, 4320, -13068) give the 7th row of the triangle below.
Triangle begins:
  -1
  1, -3
  -1, 4, -11
  1, -5, 18, -50
  -1, 6, -27, 96, -274
  1, -7, 38, -168, 600, -1764
  -1, 8, -51, 272, -1200, 4320, -13068
		

Crossrefs

The right-hand diagonal is A000254, the one before that is A001563.

Extensions

Edited by Jon E. Schoenfield, Oct 20 2013

A122525 Triangle read by rows: G(s, rho) = ((s-1)!/s)*Sum_{i=0..s-1} ((s-i)/i!)*(s*rho)^i.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 6, 18, 24, 16, 24, 96, 180, 200, 125, 120, 600, 1440, 2160, 2160, 1296, 720, 4320, 12600, 23520, 30870, 28812, 16807, 5040, 35280, 120960, 268800, 430080, 516096, 458752, 262144, 40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969
Offset: 1

Author

Arie Harel, Sep 14 2006

Keywords

Comments

When s is a positive integer and 0 < rho < 1 then C(s,rho):=(s*rho)^s/G(s,rho)/s is the well-known Erlang delay (or the Erlang's C) formula. This measure is a basic formula of queueing theory. The applications of this formula are in diverse systems where queueing phenomena arise, including telecommunications, production, and service systems. The formula gives the steady-state probability of delay in the M/M/s queueing system. The number of servers is denoted by s and the traffic intensity is denoted by rho, 0 < rho < 1, where rho=(arrival rate)/(service rate)/s.
With offset = 0, T(n,n-k) is the number of partial functions on {1,2,...,n} with exactly k recurrent elements for 0 <= k <= n. Row sums = (n+1)^n. - Geoffrey Critzer, Sep 08 2012

Examples

			G(5, rho) = 24 + 96*rho + 180*rho^2 + 200*rho^3 + 125*rho^4. The coefficients (24, 96, 180, 200, 125) give the 5th line of the triangle.
Triangle begins:
      1;
      1,      1;
      2,      4,       3;
      6,     18,      24,      16;
     24,     96,     180,     200,     125;
    120,    600,    1440,    2160,    2160,    1296;
    720,   4320,   12600,   23520,   30870,   28812,   16807;
   5040,  35280,  120960,  268800,  430080,  516096,  458752,  262144;
  40320, 322560, 1270080, 3265920, 6123600, 8817984, 9920232, 8503056, 4782969;
		

References

  • Cooper, R. B. 1981, Introduction to Queueing Theory. Second ed., North Holland, New York.
  • Harel, A. 1988. Sharp Bounds and Simple Approximations for the Erlang Delay and Loss Formulas. Management Science, Vol. 34, 959-972.
  • Harel, A. and P. Zipkin. 1987a. Strong Convexity Results for Queueing Systems. Operations Research, Vol. 35, No. 3, 405-418.
  • Harel, A. and P. Zipkin. 1987b. The Convexity of a General Performance Measure for the Multi-Server Queues. Journal of Applied Probability, Vol. 24, 725-736.
  • Jagers, A. A. and E. A. van Doorn, 1991. Convexity of functions which are generalizations of the Erlang loss function and the Erlang delay function. SIAM Review. Vol. 33 (2), 281-282.
  • Lee, H. L. and M. A. Cohen. 1983. A Note on the Convexity of Performance Measures of M/M/c Queueing Systems. Journal of Applied Probability, Vol. 20, 920-923.
  • Medhi, J. 2003. Stochastic Models in Queueing Theory. Second ed., Academic Press, New York.
  • Smith, D.R. and W. Whitt. 1981. Resource Sharing for Efficiency in Traffic Systems. Bell System Technical Journal, Vol. 60, No. 1, 39-55.

Crossrefs

Programs

  • Maple
    G:= proc(s) G(s):= (s-1)!/s*add((s-i)/i!*(s*rho)^i, i=0..(s-1)) end:
    T:= n-> coeff(G(n), rho, k):
    seq(seq(T(n, k), k=0..n-1), n=1..10);  # Alois P. Heinz, Sep 08 2012
  • Mathematica
    (* First program *)
    nn=6; t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; f[list_]:=Select[list,#>0&]; Map[f,Map[Reverse,Range[0,nn]!CoefficientList[Series[Exp[t]/(1-y t),{x,0,nn}],{x,y}]]]//Grid  (* Geoffrey Critzer, Sep 08 2012 *)
    (* Second program *)
    T[n_, k_]:= Coefficient[Series[((n-1)!/n)*Sum[(n-j)*(n*x)^j/j!, {j,0,n-1}], {x,0,30}], x, k];
    Table[T[n, k], {n,10}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jan 06 2022 *)
  • Sage
    def A122525(n,k): return ( (factorial(n-1)/n)*sum((n-j)*(n*x)^j/factorial(j) for j in (0..n-1)) ).series(x, n+1).list()[k]
    flatten([[A122525(n,k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jan 06 2022

Formula

An equivalent expression for G(s, rho) that is often used is: G(s, rho) = (1-rho)*(s-1)!*Sum_{i=0..s-1} (s^i*rho^i/i!) + rho^s*s^(s-1).
For s > 0 and rho > 0 one can use the expression: G(s, rho) = (exp(s*rho)*s*rho*(1-rho)*(s-1)*Gamma(s-1, s*rho) + rho^s*s^s)/(s*rho).
For s > 0 and rho > 0 one can also use the integral representation G(s, rho) = ((s*rho)^s/s)*Integral_{t=0..oo} rho*s*exp(-rho*s*t)*t*(1+t)^(s-1) dt.
Multiplying the n-th row entries by n+1 results in triangle A066324 in row reversed form. - Peter Bala, Sep 30 2011
Row generating polynomials are given by (1/n)*D^n(1/(1-x*t)) evaluated at x = 0, where D is the operator exp(x)/(1-x)*d/dx. - Peter Bala, Dec 27 2011